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Supervisor, Industrial Engineering, METU

Assist. Prof. Dr. Banu Yüksel Özkaya
Co-supervisor, Industrial Engineering, Hacettepe University

Examining Committee Members:

Assist. Prof. Dr. Özgen Karaer
Industrial Engineering, METU

Assoc. Prof. Dr. Seçil Savaşaneril Tüfekci
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ABSTRACT

THE PRICE OF ANARCHY IN AN UNCAPACITATED DETERMINISTIC
SHIPMENT CONSOLIDATION GAME

Karaahmetoğlu, Cevat Enes

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Seçil Savaşaneril Tüfekci

Co-Supervisor: Assist. Prof. Dr. Banu Yüksel Özkaya

NOVEMBER 2022, 76 pages

Collaboration of companies for logistics activities result in more efficient use of lo-

gistics resources which leads to reduction of logistic costs. In this study, multiple

shippers that make shipments from the same origin to the same destination are under

consideration. The shipment requests of the shippers arrive over time at a determin-

istic uniform constant rate and the shippers consolidate their shipments on uncapaci-

tated trucks. The trucks are dispatched at a certain frequency to maximize the profit

gained from the shipments. Two settings are analyzed, where in the first shippers

act as a coalition, and in the second, each of these shippers acts selfishly. The for-

mer is analyzed under a cooperative game while the latter under a non-cooperative

Nash game. For the cooperative game the structure of the characteristic function is

analyzed and the properties such as monotonicity, superadditivity, core existence and

convexity are shown. For the non-cooperative game the conditions under which the

Nash equilibrium exists are identified. Through numerical analysis the price of anar-

chy and the Gini coefficient are quantified by comparing the total profit and average

individual profit of each shipper under cooperative and non-cooperative games.
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ÖZ

KAPASİTE KISITININ OLMADIĞI BİR SEVKİYAT KONSOLİDASYONU
İŞBİRLİĞİ OYUNUNDA ANARŞİNİN BEDELİ

Karaahmetoğlu, Cevat Enes

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Seçil Savaşaneril Tüfekci

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Banu Yüksel Özkaya

Kasım 2022 , 76 sayfa

Firmaların lojistik faaliyetler için iş birliği yapmaları, lojistik kaynakların daha ve-

rimli kullanılmasını ve lojistik maliyetlerinin azalmasını sağlamaktadır. Bu çalışmada

aynı çıkış noktasından aynı varış noktasına sevkiyat yapan birden çok göndericiler ele

alınmıştır. Gönderi talepleri zaman içinde deterministik tekdüze sabit bir oranda gelir

ve gönderiler kapasite kısıtı olmayan araçlarda konsolide edilir. Göndericiler sevki-

yatlardan elde edilen karı en üst düzeye çıkarmak için araçları belirli bir sıklıkta gön-

derir. Göndericiler bir koalisyon olarak hareket ettiği ve N göndericinin her birinin

bencilce hareket ettiği iki senaryo analiz edilmiştir. Birincisi işbirliği oyunu altında,

ikincisi işbirliği olmayan bir Nash oyunu altında analiz edilmiştir. İşbirliği oyunu için

karakteristik fonksiyonun yapısı analiz edilmiştir ve monotonluk, üsttoplamlılık, çe-

kirdek varlığı ve dışbükeylik gibi özellikler gösterilmiştir. İşbirliği olmayan oyun için

Nash dengesinin var olduğu koşullar belirlenmiştir. Sayısal analiz yoluyla anarşinin

bedeli ve Gini katsayısı işbirliği olan ve işbirliği olmayan oyunlarda toplam kârı ve

her bir göndericinin ortalama kârını karşılaştırarak ölçülmüştür.
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Anahtar Kelimeler: sevkiyat konsolidasyonu işbirliği, kooperatif oyun, kooperatif ol-

mayan oyun, anarşinin bedeli, envanter yönetimi, kar tahsisi
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CHAPTER 1

INTRODUCTION

For delivering finished goods or receiving raw materials, logistics operations are es-

sential for companies. A transportation cost is incurred for each shipment of compa-

nies due to fuel consumption, carrier costs such as salary, insurance and truck costs

of leasing or maintenance. Total transportation cost over a time period grows with the

increase of transportation needs for shippers.

Today, there is an extensive growth of logistic activities globally. By 2024, the worth

of global logistics market is expected to exceed 6.8 trillion euros (Statista, 2021). It

shows that the logistics operations of companies are expanding and the transportation

becomes a significant issue. So, the cost reduction activities have become greatly

critical for companies. In this sufficiently large market, shippers with same objective

may come together and try to operate efficiently for cost reduction. But, it seems that

it was challenging for companies due to facing with fluctuating demand, restriction

on due dates, financial problems or several obligations that companies need to obey

and it results with low utilization of transportation assets which decreases profitability

of the companies and also increase environmental damage. Saenz (2012) complains

about the low utilization rates of freight vehicles in the European Union and sug-

gests collaboration on transportation activities for increasing efficiency of the freight

vehicles.

Collaboration is expressed working together with the objective of completing tasks

and eventually achieving joint goals (Liao et al., 2017). In transportation, shippers

can collaborate in several ways for their common benefit. They can make invest-

ments jointly on transportation assets and share these assets for reqular transportation

operations. Also, they can collaborate by consolidating administrative operations by
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hiring co-workers or sharing technologies they developed for the ease of. Lastly, ship-

pers may make collaboration by consolidating their requested shipments to increase

the utilization of the transportation assets and, as a result of that, to decrease their

transportation cost and/or to maximize profit made by shipments. An example for

shipper collaboration can be given from Nistevo, Elogex, and Transplace where they

manage a collaborative logistics network and use the Internet as a common comput-

ing platform for to provide the chance to track of their costs incurred. (Ergun et. al.,

2017). Two companies of Nistevo network collaborate and make shipment schedules

together and it results with a combined 19% savings for both shippers. In this study,

we focus on a shipment consolidation case where shippers make joint shipments and

they aim to maximize profit.

Transportation cost is not the only cost item that shippers need to handle. Ship-

pers need to deal with waiting costs of goods in addition to the transportation costs.

In shipment consolidation, shippers wait until the joint shipment to deliver their re-

quested goods. A waiting cost of the goods are incurred for the waiting time of joint

shipment based on the priority criteria of shippers of goods. If they want to reduce

the shipment frequency, they will be exposed to the higher total waiting cost and if

they try to decrease total waiting cost they do, they will be exposed to the higher total

transportation cost. Thus, there is a trade-off between transportation cost and waiting

cost and shippers need to find optimum point for minimizing their total cost. Shippers

can have different due dates, responsibilities or priority for the goods to be delivered.

So, shippers need to find out ways to manage their operations with a joint shipment

scheme.

In this study, we study the case where there are multiple shippers making shipments

from the same origin to the same destination. Shippers may collaborate and make

joint shipments to the same destination for increasing utilization of the transportation

assets and making more profit from shipments. We work on an environment where the

shipment requests of the shippers arrive over time at a deterministic uniform constant

rate, and the shippers consolidate their shipments on trucks that have sufficiently

large capacity. The trucks are dispatched at a certain frequency to maximize the

profit gained from the shipments. The joint shipments enables cost-saving from total

transportation costs and these savings should be shared among all shippers. Each

2



shipper potentially has different characteristics such as revenue, arrival rate of goods

to be shipped or waiting cost. For a sustainable shipment consolidation initiation,

shippers need to consent to their allocated profit and their primary examination will

be comparing the allocated profit with profit they make with individual shipments.

We focus on the joint shipment and profit allocation decisions.

To investigate the profit allocation of joint-shipment, we study cooperative and non-

cooperative games of joint shipment. In the cooperative game, shippers act as a coali-

tion and the total benefit is also considered beside the individual benefits of shippers.

In non-cooperative game, each shipper acts as selfishly and make their joint shipment

decisions according to only their benefits. We study both scenarios and then compare

the profit allocation of the games through numerical analysis. That profit loss on the

allocated profits is quantified by price of anarchy.

Our study aims to answer the following research questions under an uncapacitated and

deterministic environment: (1) What are the necessary conditions for shippers having

different characteristics to make profitable joint-shipments? (2) How do shippers

operate optimally with joint-shipments? (3) Does there exist a desired scheme to

allocate the profit? If exists, does it satisfy the properties of cooperative games and

is it sustainable? (4) What is the setting for a non-cooperative game, does Nash

Equilibria exist? (5) Does price of anarchy, the profit loss due to acting selfishly

instead of coalition, exists?

The remaining chapters are organized as follows: In Chapter 2, we discuss the related

studies from the literature. Then, we start our problem setting and present some

structural results in Chapter 3. Here, 2 shipper and s shipper cases are analyzed.

Next, In Chapter 4 and In Chapter 5, cooperative game and non-cooperative game are

studied, respectively. Through the findings of these games, the price of anarchy is

discussed in Chapter 6. Lastly, the remarks of our thesis and possible future works

are shared in the conclusion part.
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CHAPTER 2

LITERATURE REVIEW

After the realization of benefits of joint replenishment and/or shipment consolidation

for organizations, the researches about these topics has increased and developed for

different scenarios. Also, a major question emerged from these concepts is that how

the benefits of collaboration will be shared. In the related literature, this problem has

also worked in detail and there are several proposed solution approaches for different

settings using cooperative or non-cooperative game theory methodologies. In the

following sections, the studies that are related with our work are reviewed.

2.1 Cooperative Inventory Game

Meca et al. (2004) studies joint replenishment for multiple retailer demanding for

same good from a single supplier. They study basic EOQ inventory model where

the decision parameter is average inventory cost per time unit and the objective is

to minimize the average cost per time unit of the inventory. They study optimal

ordering policy for the coalition and the allocations of cost savings among the firms

in coalition by cooperative game theory. They specified that the ordering cost as same

and revealed information for all firms but the constant rates of demands and holding

costs as private information. They found that sharing firm’s average number of orders

per time unit is enough for determining optimal joint ordering policy.

Körpeoğlu et al. (2012) studies a non-cooperative game for joint replenishment by

multiple firms which are operating under an EOQ-like setting with inventory hold-

ing costs and demand rates. Each firm decides whether to replenish jointly and if so

determines the contribution amount to ordering cost. There is an intermediary who
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determines the joint cycle time which is the lowest joint cycle time that can be fi-

nanced with the joint contributions of the firms.It is found that when there is a single

firm with lowest stand-alone cycle time, there is a unique undominated Nash equilib-

rium. That firm pays all ordering cost and others firms becomes free riders and enjoy

free deliveries. The free riders’s equilibrium cost is lower than their stand-alone costs.

When there are multiple firms with the lowest stand-alone cycle time, there are multi-

ple equilibria.In some of these equilibria, there can be also free rider firms but in any

equilibrium consisting more than one contributor,all firms are strictly better than their

individual replenishment case. In any case, the equilibrium joint cycle time is equal

to the lowest stand-alone cycle time.

Güler, Körpeoğlu and Şen (2017) studies jointly replenishing multiple firms operat-

ing under EOQ like environment in a decentralized, non-cooperative setting where

demand rate and inventory holding cost are private information. They seek to find

a policy that determines the joint replenishment frequency and allocating the joint

ordering costs through their reported stand-alone replenishment frequencies. Their

first finding is that there does not exist a direct mechanism that can achieve efficiency,

incentive compatibility, individual rationality and budget-balance. After that, they

propose a two parameter mechanism which are used for determining the joint replen-

ishment frequency and allocation of order costs based on firms’ reports. They found

that the order costs should be allocated uniformly for achieving efficiency. They clar-

ify the conditions for constructive equilibrium, characterize and comparative statistics

for the case the proposed two parameters are equal. They also show that the mecha-

nism with smaller values of the two parameters which are equal to each other leads to

more efficient outcomes and more defendable considering fairness.

In Timmer et al. (2013), companies is reviewing their inventory continuously and

facing Poisson demand. Authors study to find cooperation strategies for the compa-

nies. They seek stable cost allocations of joint costs so that the companies become

devoted to cooperation. Timmer et al. (2013) consider two cooperation policies for

further comparisons. First one is that companies jointly ordering at joint inventory

position reorder level. Second one is that ordering as soon as any of them reaches

its reorder level. They provide explicit expressions of the joint costs under coopera-

tion and individual allocated costs. Through their comparisons of the strategies and
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the non-cooperative case, they find that the individual constraints strategy has lowest

cost for two or three companies. Based on their numerical experiences, stable cost

allocations of joint cost exist proven by the distribution rule and the Shapley value.

They also find that both cost allocation rules are robust to parameter changes and may

provide benefits to companies with cooperation.

Dror and Hartman (2011) presented a general survey of cooperative inventory games.

They examine deterministic and stochastic games. For deterministic games, they fo-

cus on Economic Order Quantity policies and for stochastic games, they are interested

on Newsvendor-like centralization games. After they review the existing literature on

these type games, they point out the potential future research questions not examined

in the literature and they state that there would be a significant interest on document-

ing real life cases of cooperating competitors and providing empirical analysis for

cost allocation rules of these competitors applied.

Satir et al.(2018) works on the problem of allocating vehicle capacity between two

shipment order types which are dynamically consolidated. They model the problem

as a continuous-time Markov Decision Process with the objective of minimizing total

discounted cost.It is assumed that orders arrive according to compound Poisson pro-

cess and there are two types of orders needed to be shipped which are expedited and

regular. They propose quantity-based optimal threshold policies under particular con-

ditions. In their models, they use two simplifications which are common in existing

literature. Their state space takes only the accumulated orders in unit-order sizes and

they use holding cost as a penalty to late deliveries of orders without hard due-date

constraints.They implement the solution approach in two real life problems and they

show that the approach outperformed the existing time policies.

2.2 Cooperative Transportation Game

Ergun et. al. (2007) study shipper collaboration by emphasizing on the logistics col-

laborative networks managed by a common computing platform to reduce "hidden

costs" due to asset repositioning. They state that through collaboration shippers may

form tours with higher utilization rates and less asset repositioning comparing to in-
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dividual lanes. In their study, they focus on finding a set of tours connecting regularly

executed truckload shipments to minimize asset repositioning. They formulate the

lane covering problem which is a combinatorial optimization problem and propose

several heuristic methods to solve and make a computational study on testing their

solution approach.

Yılmaz and Savaseneril (2011) study collaboration among small shippers under un-

certainty. Their focused problem is coalition formation among shippers with small-

volume and stochastic shipments and designing fair allocation mechanisms to share

vehicle capacity. They come up with a continuous time Markov Chain model with

the objective of cost minimization. They compare the performance of the model with

naive and myopic policies under different shipper characteristics and present the re-

sults for alternative scenarios. They claim that for a successful collaboration, the

shipment volumes, the timings of shipments, tightness of delivery times and sensitiv-

ity to the late deliveries for each shipper should be analyzed.Also, they provide the

conditions of the fair allocation of savings and stability of the coalition to prevent

occurrence of sub-coalitions.

Pan et. al. (2019) propose a comprehensive survey of the development of horizontal

collaborative transport (HCT) over the past ten years. They aim to identify research

trends, gaps and propose some prospective lines of research questions for further

studies.They developed a survey framework based on two axis: HCT solutions and

implementation issues. They claim that their survey can be benefical for the industry

stakeholders by providing guidelines for choosing a HCT solution and its possible

implementation difficulties. They find that carrier alliance and flow controller collab-

oration were the most frequently studied but pooling and physical internet solutions

are started to be attractive topics.

2.3 Cost Allocation in Coalition

Anily and Haviv (2007) work on a cost allocation rule under an infinite-horizon deter-

ministic joint replenishment system where the setup transportation/reorder cost asso-

ciated with a group of retailers placing an order at the same time equals some group-
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independent major setup cost plus retailer-dependent minor setup costs. They focus

on the power-of-two policy and show that under the optimal power-of-two policy, the

corresponding cooperative game satisfies concavity and the game is totally balanced

game having nonempty core sets. They also prove that there are infinitely many core

allocations.

Zhang (2008) study on the cost allocation problem for joint replenishment models.

They consider a case where there is one warehouse multiple retailers and a sub-

modular joint setup cost for replenishment. They focus on cost allocation of of the

retailers under an power-of-two policy and they claim that the allocation problem can

be represented as a cooperative game. They prove that the game has non-empty core

sets. To prove the nonemptiness of the core sets, they use a duality approach.

2.4 Joint Replenishment

Jackson et. al. (1983) study on joint replenishment problem focusing on realistic

and consistent reorder intervals in production or distribution systems. They develop

a general dynamic programming formulation of the problem beside of the general

statement assuming constant reorder intervals. They present an sorting algorithm

based on the power-of-two restriction. They claim that the average annual cost of

their proposed solution is within 6% of the general problem’s long-run minimum

average annual cost.

Yu-sheng and Zheng (1992) study on joint replenishment problem under several set-

tings. There are constant but item specific demand rates and joint fixed procurement

costs which are not separable. The replenishment intervals are the constant intervals

which are the power-of-two multiples of some fixed or variable base planning period

according to power-of-two policy. They develop algorithms to find optimal power-

of-two policy. These algorithms also includes cost allocation to each items. They

claim that with their proposed cost allocation scheme, the problem with separable

costs and joint nonseperable costs are equivalent in the sense that both problem has

same optimal solution set under power-of-two policy.

Bylka (2011) studies a setting consisting of one producer and multiple retailers. De-
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mand is taken as constant and deterministic. Production rate is sufficient to satisfy

the demand. They analyze special production and replenishment policies for vendor

and buyers under a production distribution cycle. They assume that the product is in-

stantly sent to buyers’ stocks from the producer stock in discrete batches. The paper

offers a non-cooperative game model with an objective of minimizing costs for all

agents who need to choose sizes and numbers of production batches. For the cases

where the vendor or the buyers control all the shipments, they found that there is Nash

equilibrium in the sub-games. When there is a iterative coordination model starting

with an agreement on the shipment number and after that deciding batch sizes non-

cooperatively. In both games, agents try to choose strategies that minimizes their total

costs. In these games, they proved that there are Nash and Stackelberg equilibrium.

He et al. (2017) study cost-allocation in a joint replenishment setting. They used

the assumption that retailers order considering Power-of-Two policies where the re-

plenishment interval of each retailer is an integer power-of-two times a base planning

period. They study the problem as a non-cooperative game theory perspective which

is considered as a complementary approach to the existing cooperative approaches.

In their model, it is asked to all retailers to freely choose their own replenishment

interval according to what is beneficial for themselves. Their proposed cost allo-

cation rule is splitting the major setup cost equally to the retailers and the rule is

preannounced to the retailers. So, they usually act on minimizing their cost with the

anticipating the other retailers’ response. They show that there is a Nash Equilibrium

for their proposed cost allocation rule. They also compare the non-cooperative solu-

tion to centralized optimal solution and calculate efficiency loss according to social

optimum solution. They conclude that their proposed cost-allocation rule can be an

effective mechanism to set up a cost-efficient outcome that is also consistent with

player’s individual strategic behavior.

2.5 Price of Anarchy

Zhang et. al. (2018) study transportation network under two different routing scenar-

ios. They compare the user-centric selfish routing policy versus the socially optimal

and system-centric one. They consider an index to measure and increase efficiency:
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the price of anarchy. It is defined as the ratio of the total travel latency cost under self-

ish routing over the corresponding quantity under socially optimal routing. So, they

expect potential values of the price of anarchy greater or equal to one and the larger

amount implies more inefficiency due to the selfish drivers. To estimate the price of

anarchy they develop a model that derives the origins, destinations and user prefer-

ences of drivers from traffic data of a specific area. Using that, they claim several

strategies that can decrease the price of anarchy and increase efficiency.

Perakis and Roels (2007) quantify the price of anarchy which is loss of efficiency

from decentralizing operations that uses price-only contracts. They define the price

of anarchy as the ratio of profits of centralized and decentralized supply chain. They

study on the price of anarchy associated with different supply chain configurations

such as push or pull inventory positioning, two or more stages, serial or assembly

systems, single or multiple competing suppliers, and single or multiple competing

retailers. After the analysis, they propose several findings. They find that in two stage

supply chains, the price of anarchy is at least 1.71. Secondly, they claim that the

efficiency of the supply chain generally decreases when the number of intermediaries

increases. Thirdly, they claim that competition generally enhances the supply chain

coordination. Lastly, they find that in pull configurations, the inventory risk is shared

among the supply chain partners and it reduce the effects of double marginalization

comparing to a push configuration.

Haughton, Rostami and Espahbod (2022) study on the price of anarchy in truckload

transportation spot markets. Their approach is a combination mathematical optimiza-

tion and behavioral experiments. They considers the price of anarchy with three met-

rics: total financial earnings, customer service level and eco-efficiency. They develop

mathematical model and algorithms to make assignments of multi-day truck load.

They also clarify how human behavior can raises the price of anarchy and present a

platform for human behavior experiments to investigate the comparison of centraliza-

tion versus decentralization. They claim that there is a price of anarchy on all three

metrics: average of 16%–34% loss of earnings; 10% drop in on time delivery; and

18% drop in eco-efficiency. Also, they claim that price of anarchy for three metric

worsens by human negotiations in spot market. They provide an illustration showing

the doubled losses by human involvement.
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2.6 Contribution of Our Study

In our study, we extend the researches by presenting an uncapacitated deterministic

profit game by considering the cooperative game in the research of Meca et al. (2004)

and the non-cooperative game in the research of Körpeoğlu et al. (2012). We consider

the possibility of partially involvement of shippers to the joint shipment. We aim to

quantify the price of anarchy by comparing the profits made in cooperative and non-

cooperative games.
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CHAPTER 3

PROBLEM SETTING AND STRUCTURAL RESULTS

We study shipment consolidation games where shippers can choose to operate fully

or partially at each shipment cycle in an uncapacitated deterministic environment. We

do structural analysis on the total profit of joint shipments for both 2 shipper and s

shipper cases. Starting with the 2 shipper case, we analyze different scenarios chang-

ing on whether shippers can make shipments individually or not. We find out the

parametric constraints that are needed to be satisfied to make profitable joint ship-

ments. Next, we generalize our findings on s shippers, and express the total profit

per unit time, optimal joint shipment frequency, and optimal operation levels for each

shipper. After the analysis of total profit in detail, we study on allocation of the profit

to shippers. We express a cooperative game setting where the shippers act as a coali-

tion. An allocation scheme is presented for the shippers in the coalition and then the

characteristic function is analyzed and the properties and the core of the cooperative

game is shown. Then, we study a non-cooperative Nash game. The best response of

the shippers and conditions under which Nash equilibrium exists are expressed. After

the findings for both types of games, through numerical analysis, the price of anarchy

is quantified by comparing the profit of each shipper under both games.

Suppose that there are n shippers that perform shipment activities between the same

origin and destinations. To make use of the economies of scale and to make more

profit, the items to be shipped consolidated. The items to be shipped arrive as ship-

ment requests. The shipment requests by shippers assumed to arrive at a constant

uniform rate. Arrival rate of requests for shipper i is λi. When "sufficient" amount of

requests accumulate, a vehicle dispatches. Until dispatch, for shipper i a unit waiting

cost of ci is incurred per unit per time. For every dispatch(shipment), a transportation
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cost of A is incurred and shipper i earns ri for each unit shipped.

In our problem setting, we analyze the benefits of joint shipment in a deterministic

environment. It is assumed that vehicle capacity is sufficiently high.

We will first characterize the conditions, where the shippers are able to operate indi-

vidually profitably. Let the time between the two consecutive shipments (dispatches)

be T. Denote the total profit per unit time of shipper i, TPi(T ).

TPi(T ) = riλi −
A

T
− ciλiT

2
(3.1)

Shipper i is able to operate individually if TPi(T ) > 0. Lemma 3.0.1 presents the

conditions for TPi(T ) > 0.

Lemma 3.0.1. LetAi =
r2i λi

2ci
be the threshold value for shipper i = 1, 2...n. When

A < Ai, TPi(T ) > 0, e.g. shipper i is able to operate individually.

Proof. To find the maximum individual profit with respect to T , the first order condi-

tion of TPi is checked:

∂TPi(T )
∂T

= A
T 2 − ciλi

2
= 0

Since the second order condition is negative and the function is concave, the optimal

value of T is found as T ∗ =
√

2A
ciλi

. For T = T ∗, TPi(T ) is found as:

TPi(T
∗) = riλi −

√
2Aciλi (3.2)

Therefore, shipment operating individually for shipper i only if riλi >
√
2Aciλi. We

call them as "self-sufficient" shippers. So, to become a self-sufficient shipper, the

following condition is need to be satisfied for shipper i:

A <
r2i λi

2ci
= Ai (3.3)

■

It is found that there is a critical level, defined as Ai, for shippers to become self-

sufficient to make profitable shipments.
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3.1 Two Shipper Setting

First, we analyze the case where n = 2 to have a complete understanding of the

process.

Any interval of time that begins with shipment of orders and ends the instant before

the next shipment is called a cycle for the setting. The cycles are regenerative and are

stationary. There can be no profitable and preferable ways for all shippers to waiting

until joint shipment due to the different characteristics. Revenues and waiting costs

of per unit can be varied for all shippers and it directly affects shippers’ profitability.

In our setting, a shipper i may partially take place in a joint shipment cycle. It is a

shipper’s decision to maximize their profits from the time they allocated for operating

with the joint shipment. We use pi to denote the fraction of time that shipper i taken

place in a cycle T .

For shipper 1 and shipper 2, given p1 and p2, individual cycle times T1 and T2 equal

to Tp1 and Tp2, consecutively. In these cycle times, shippers are actively operating

and their goods to be shipped are waiting until dispatch. Until the dispatch, shippers

are keeping their goods in their stocks and waiting cost is incurred at that duration.

When pi = 1, shipper i is called as "full time shipper" and when 0 < pi < 1, shipper

i is called as "partial time shipper". For the setting, shipper 1 is always a full time

shipper.

For a partial time shipper, there is a time that they do not choose to operate with this

group, Tp1 - Tp2. So, in that time, they can search and try to find a different shipment

consolidation group or they can prefer to not operate in that times which is a more

profitable scenario from their individual shipment case.

In Figure 3.1, cycles of shipper 1 and shipper 2 are shown as an example. Here, T1

is greater than T2 and shipper 2 operates with a lower fraction of time than shipper

1. The quantity waiting to ship increases with arrival rates of shippers, λ1 and λ2

per unit time. Despite of different level of arrival rates and quantities of goods to be

shipped, they are able to make joint-shipments.
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Figure 3.1: Cycles of each shipper when shippers make the dispatch decisions jointly,

T1 > T2

Given T , one can express total profit per cycle as follows:

r1λ1Tp1 + r2λ2Tp2 − (A+
c1λ1T

2p1p1
2

+
c2λ2T

2p2p2
2

) (3.4)

Dividing this by T , one gets TP (T ), which is total profit of shippers per unit time. It

is the total cycle profit divided by the cycle length.

TP (T ) = r1λ1p1 + r2λ2p2 − (
A

T
+

c1λ1Tp
2
1

2
+

c2λ2Tp
2
2

2
) (3.5)

To maximize total profit that shippers get, the following optimization model is built.

Here, T , p1 and p2 are decision variables and the model is non-linear.

(Profit) Max TP (T, p1, p2)= r1λ1p1 + r2λ2p2 − (A
T
+

c1λ1Tp21
2

+
c2λ2Tp22

2
)

s.t. 0 ≤ p1 ≤ 1

0 ≤ p2 ≤ 1

T > 0

The objection function of the model is maximizing the profits of shipper 1 and ship-

per 2 under a joint-cycle time T and under individual operating times, Tp1 and Tp2.
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The constraints of the model states the bounds on the variables. To determine the

maximum total profit, TP (T ), one needs to determine optimal T , p1 and p2. Let T ∗

be the optimal T value for TP (T ) function and p∗1 and p∗2 be the optimal p1 and p2

values. We follow a two stage approach where we first determine p∗1and p∗2 for a given

T , then using these determine T ∗.

Lemma 3.1.1. For a given T , objective function of (Profit) model is concave in

(p1, p2).

Proof. Hessian matrix, H(p1, p2) is set for verifying concavity. Hessian matrix of

the objective function is a 2 × 2 matrix whose ijth entry is δ2TP (T,p1,p2)
δpiδpj

. When

TP (T, p1, p2) has continuous second-order partial derivatives for all variables and all

non-zero principal minors have the same sign as (−1)k where k=1,2; then TP (T, p1, p2)

is concave. (Winston,2004)

The Hessian matrix is given below:

H(p1, p2) =

−c1λ1T 0

0 −c2λ2T


An ith principal minor of a matrix is the determinant of any matrix obtained by delet-

ing n− i rows and the corresponding n− i columns of the matrix. (Winston,2004)

The first principal minors of TP (T, p1, p2) are diagonal entries of the Hessian which

are −c1λ1T and −c2λ2T . These are both non positive.

The second principal minor TP (T, p1, p2) is the determinant of H(p1, p2) and it is

c1c2λ1λ2T
2 and positive. Thus, TP is a concave function. ■

By proving concavity, it is determined that there is a unique maximum point of

TP (T ). So, p∗1 and p∗2 exists. For a given T , the optimal values of p1 and p2 will

be found through the KKT conditions. Let µ1,µ2, µ3, µ4 be the multipliers satis-

fying the Kuhn-Tucker(KKT) conditions. The related constraints are given in same

order:p1 ≤ 1,0 ≤ p1,p2 ≤ 1,0 ≤ p2. Also, for the further analysis, w.l.o.g. we assume
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the following relation: r1
c1

> r2
c2

.

Lemma 3.1.2. Optimal (µ1, µ2, µ3, µ4, p
∗
1, p

∗
2) are characterized as follows:

(µ1, µ2, µ3, µ4, p
∗
1, p

∗
2) =


(r1λ1T − c1λ1, r2λ2T − c2λ2, 0, 0, 1, 1) T < r2

c2
< r1

c1

(r1λ1T − c1λ1, 0, 0, 0, 1,
r2
c2T

) r2
c2
≤ T < r1

c1

(0, 0, 0, 0, r1
c1T

, r2
c2T

) r2
c2

< r1
c1
≤ T

Proof. For a given T , the Kuhn-Tucker(KKT) conditions are checked for optimal so-

lution. Since our problem is a maximization problem, if (p∗1, p∗2) is an optimal solution

to the problem, then (p∗1, p
∗
2) must satisfy the following conditions and there must ex-

ist multipliers µ1,µ2, µ3, µ4 satisfying the conditions discussed below.

For a maximization problem f(x1, x2, ..xn) with n decision variables and m con-

straints in (gi(x1, x2, ..xn) ≤ bi i = 1, 2, ...m), if x̄ = (x̄1, x̄2, .., x̄n) is an opti-

mal solution, then x̄ must satisfy the constraints of the model, and there must exist

λ̄1, λ̄2...., λ̄n satisfying: (Winston, 2004)

δf(x̄)
xj
−

∑i=m
i=1 λ̄i

δgi(x̄)
δxj

= 0 j = 1, 2, ...n

λ̄i[bi − gi(x̄1)] = 0 i = 1, 2, ...m

λ̄i ≥ 0 i = 1, 2, ...m

Constraints which emerge from the KKT conditions are given below:

p∗1 =
r1λ1 − µ1 + µ3

c1λ1T
(3.6)

p∗2 =
r2λ2 − µ2 + µ4

c2λ2T
(3.7)

µ1 − µ1p1 = 0 (3.8)

µ2 − µ2p2 = 0 (3.9)

µ3p1 = 0 (3.10)

µ4p2 = 0 (3.11)

µi ≥ 0∀i (3.12)
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For a given 0 < T < ∞, as a result of these conditions, the following cases are

obtained. Let w.l.o.g. r1
c1

> r2
c2

. For µi where i = 1, 2, 3, 4, there are 16 cases to

analyze for corresponding value positions which are 0 or ≥ 0.

1. When µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0; from Equations 3.6 and 3.7, p∗i = ri
ciT

for i=1,2, where r2
c2

< r1
c1
≤ T .

2. When µ1 > 0, µ2 = 0, µ3 = 0, µ4 = 0; from Equations 3.8 and 3.7, p1 = 1 and

p∗2 =
r2
c2T

where r1
c1T

> 1 and r2
c2
≤ T < r1

c1
.

3. When µ1 > 0, µ2 > 0, µ3 = 0, µ4 = 0; from Equations 3.8 and 3.9, p∗1 = 1 and

p∗2 = 1 where T < r2
c2

< r1
c1

.

Following cases have no real or considerable solution. The cases and reasons

about why they are not considered are given:

4. When µ1 = 0, µ2 > 0, µ3 >= 0 and µ4 > 0, since r1
c1

> r2
c2

, from Equation 3.7,

this case can not happen.

5. Note that, from Equations 3.8 and 3.9, there will be no solution where µ1 > 0

and µ3 > 0 or µ2 > 0 and µ4 > 0 since they can not exist for any corresponding

p1 and p2 values.

6. Note that, from Equations 3.6 and 3.7, there will be no solution where µ1 = 0

and µ3 > 0 or µ2 = 0 and µ4 > 0 since p∗i can not be equal to 0 when ri,ci,T

and µ3 or µ4 are all positive.

■

Next, we determine T ∗.

Corollary 3.1.1. TP (T ) is a piece wise function defined as where TPa is equal to

(r1λ1 + r2λ2)− (A
T
+ (c1λ1+c2λ2)T

2
) , TPb is equal to (

r22λ2

2c2
−A)( 1

T
) + r1λ1 − ( c1λ1T

2
)

and TPc is equal to (
r21λ1

2c1
+

r22λ2

2c2
− A)( 1

T
)
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TP (T ) =


TPa T < r2

c2
< r1

c1

TPb
r2
c2
≤ T < r1

c1

TPc
r2
c2

< r1
c1
≤ T

Proof. As the optimal p1 and p2 values are given for the specified regions in Lemma

3.1.2, TPa, TPb and TPc are found by solving p = p∗ in the specified region. ■

Figure 3.2: Behavior of TP(T) with respect to T, and comparison with individual

shipments

Figure 3.2 shows an example case for comparison of total profit with respect to differ-

ent cycle times where A = 150, (r1, c1, λ1) = (40, 4, 8) and (r2, c2, λ2) = (30, 4, 3).

Here, it is shown that r2
c2

and r1
c1

are critical levels for TP regions. TPa, TPb and TPc

is shown at only in functions true regions. Also, shippers’s total joint-shipment prof-

its are higher than their total individual shipment profits for any cycle time. Observe

that the slopes of the function at connection points are same and there is a global

maximum total profit value.

Proposition 3.1.1. TP (T, p∗1, p
∗
2) is continuous and differentiable for all T .

Proof. Values of limT→ r2
c2

TPa(T ) and TPb(T = r2
c2
) are equal to each other since;
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lim
T→ r2

c2

TPa(T ) = TPb(T =
r2
c2
) = r1λ1 + r2λ2 − (

(c1λ1 + c2λ2)r2
2c2

+
Ac2
r2

) (3.13)

When the derivative of the TP from both directions at T = r2
c2

is checked, it is

observed that they are equal to each other:

lim
T→

r+2
c2

∂TPb(T ))

∂T
=

Ac22
r22
− c1λ1 + c2λ2

2
(3.14)

lim
T→

r−2
c2

∂TPa(T ))

∂T
=

Ac22
r22
− c1λ1 + c2λ2

2
(3.15)

Values of limT→ r1
c1

TPb(T ) and TPc(T = r1
c1
) are equal to each other since;

lim
T→ r1

c1

TPb(T ) = TPc(T =
r1
c1
) = (

r22λ2

2c2
− A)(

c1
r1
)− r1λ1

2
(3.16)

Directions of TPb and TPc while converging to T = r1
c1

are equal to each other since;

lim
T→

r−1
c1

∂TPc(T ))

∂T
= lim

T→
r+1
c1

∂TPb(T =
r−1
c1
))

∂T
=

c21
r21
(A− r21λ1

2c1
− r22λ2

2c2
) (3.17)

■

Thus, it is now verified that there is TP (T, p∗i , p
∗
j) is continuous and differentiable

in T . So, for finding optimal cycle time, the regions and their boundaries can be

analyzed.

Proposition 3.1.2. When (
r21λ1

2c1
+

r22λ2

2c2
− A) ≥ 0, TPc(T ) is decreasing in T , so

the T value that maximizes TPc(T ) is r1
c1

and shipper 1 is full time shipper where
r2
c2

< r1
c1
≤ T .

Proof. When (
r21λ1

2c1
+

r22λ2

2c2
− A) > 0, value of TPc(T ) is decreasing in T for r2

c2
<

r1
c1
≤ T . It can be checked from the derivative:

∂TPc(t)

∂T
=

(
r21λ1

2c1
+

r22λ2

2c2
− A)

T 2
< 0 (3.18)

When r2
c2

< r1
c1
≤ T , TP = TPc(T ) and p∗1 = r1

c1T ∗ . Plugging T ∗ into p∗1 formula

gives p∗1 = 1 value for TPc(T ) function. ■
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Note that when (
r21λ1

2c1
+

r22λ2

2c2
− A) < 0, ∂TPc(T )

∂T
is positive and there will be no op-

timal extreme point in TPc(T ) as T ∗ converges to∞, meaning that there will be no

shipments. So, for all joint-shipments, optimal cycle time can be searched in TPa(T )

and TPb(T ) the region of T < r1
c1

.

Let T F
S be the T value that maximizesTPa(T ) and T F

L be the T value that maximizesTPb(T )

. Let A2 be r22λ2

2c2
.

Proposition 3.1.3. T ∗ =

T F
S =

√
2A

c1λ1+c2λ2
ifT F

S ≤ r2
c2

T F
L =

√
( 2
c1λ1

)(A− A2) ifT F
L > r2

c2
andA ≥ A2

When A < A2, T F
L is not defined. Thus, T ∗ = T F

S ≤ r2
c2

.

Proof. T F
S and T F

L values are found by the FOC of the TPa(T ) and TPb(T ) functions,

respectively.

∂TPa(T )

∂T
=

A

T 2
− c1λ1 + c2λ2

2
= 0 (3.19)

Note that TPa is concave in T . Thus from FOC:

T F
S =

√
2A

c1λ1 + c2λ2

(3.20)

When T F
S ≤ r2

c2
, where TPa is defined, T ∗ = T F

S since TP is continuous and differ-

entiable(see Proposition 3.1.1). Taking derivative of TPb(T ) with respect to T :

∂TPb(T )

∂T
= (
−r22λ2

c2
+ A)(

1

T 2
)− c1

λ1

= 0 (3.21)

T F
L =

√
(

2

c1λ1

)(A− 2r22c2
λ2

) =

√
(

2

c1λ1

)(A− A2) (3.22)

When T F
L exists and T F

L > r2
c2

, where TPb is defined, T = T F
L since TP is continuous

and differentiable(see Proposition 3.1.1); ■

So, it is shown that T ∗ is set according to T F
S and T F

L values and their relation with r2
c2

.

It also indicates that whether shipper 2 is full time shipper or partial time shippers.

Corollary 3.1.2. Let A3 be the value of A that makes the derivative of TP(T) at

T = r2
c2

equal to zero. Then, A3 =
r22
2c22

(c1λ1) + A2 and A3 > A2.
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Proof. When we equate the first derivative of TP at T = r2
c2

to 0, we obtain the fol-

lowing:

∂TP (T )

∂T
=

Ac22
r22
− c1λ1 + c2λ2

2
= 0. (3.23)

A3 =
r22
2c22

(c1λ1) +
r22λ2

2c2
(3.24)

A3 =
r22
2c22

(c1λ1) + A2 (3.25)

■

A3 is the significant level for A value. It is the maximum level that shipper 2 is

optimally full time shipper. If A is greater than A3 value, then T ∗ is greater than r2
c2

.

Proposition 3.1.4. T ∗, p∗1and p∗2 values for corresponding A values are given below:

• T ∗ =

T F
S A < A3

T F
L A ≥ A3

• (p∗1, p
∗
2) =

(1, 1) A < A3

(1, r2
TF
L c2

) A ≥ A3

The optimal profit function is given by:

TP ∗ =

r1λ1 + r2λ2 −
√

2A(c1λ1 + c2λ2) A < A3

r1λ1 −
√

2c1λ1(A− A2) A ≥ A3

Proof. In Corollary 3.1.2,it is shown that when A = A3, T ∗ = r2
c2

. For A < A3 leads

T ∗ = T F
S and for A > A3 leads T ∗ = T F

L .

p∗1and p∗2 is set by Equation 3.1.2 and relation of A3 and r2
c2

.

After determining T ∗, p∗1and p∗2, TP
∗ is found by plugging in the variables.

■
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It is shown that for a 2 shipper setting; T ∗, p∗1 and p∗2 can be determined with the

comparison of A and A3. This also enables to find out TP ∗ value.

3.2 Profitability Analysis for Two Shipper Setting

After that, we start to analyze different cases where shippers’s self-sufficiency differs.

That will enable to clarify the conditions for making profitable joint-shipments. The

following table provides value and explanations of the parameters, which is going to

be discussed in following parts.

Table 3.1: Table of Parameters, Threshold values and their explanations

Parameter Value Explanation

A1 r21λ1

2c1
A threshold value of A for the

first shipper’s profitable individual

shipment.(self-sufficiency)

A2 r22λ2

2c2
A threshold value of A for the sec-

ond shipper’s profitable individual

shipment.

A3 r22
2c22

(c1λ1) + A2 A corresponding value for A makes

the derivative of the total profit

function at r2
c2

equal to 0.

A4 A2 + r1r2λ2

2c1
A threshold value of A for prof-

itability of joint shipment in several

cases.

A5 A1

2
+ A2 A threshold value of A for prof-

itability of joint shipment in several

cases.

A6 r22λ2

2[2c1λ1+c2λ2−2
√

c1λ1(c1λ1+c2λ2)]
A threshold value of A for prof-

itability of joint shipment in several

cases.

TD
∑

i(riλi −
√
2Aciλi) Optimal total profit when shippers

operate individually .
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3.2.1 Self-sufficient shippers

Self-sufficient shipper means that the shipper can make shipments profitably and in-

dividually.(See Equation 3.3 ) In that case, we study joint-shipment for two self-

sufficient shippers.

Proposition 3.2.1. When A < A2; TP (T ∗) > TD, (p∗1, p
∗
2) = (1, 1) and T ∗ = T F

S .

Proof. When A < A2, both shippers are self-sufficient.

• From Proposition 3.1.4,T ∗ = T F
S and (p∗1, p

∗
2) = (1, 1) since A < A2 < A3 .

• To prove profitability, TP (T ∗) > TD is checked.

From Proposition 3.1.4, it is found that TP (T ∗) = r1λ1+r2λ2−
√

2A(c1λ1 + c2λ2).

Also, optimal individual profit function is TPi = riλi −
√
2Aciλi for shipper

i=1,2.

r1λ1 + r2λ2 −
√

2A(c1λ1 + c2λ2) > r1λ1 −
√

2Ac1λ1 + r2λ2 −
√

2Ac2λ2

(3.26)√
2A(c1λ1 + c2λ2) <

√
2Ac1λ1 +

√
2Ac2λ2 (3.27)

2A(c1λ1 + c2λ2) < 2Ac1λ1 + 2Ac2λ2 + 2A
√

c1λ1c2λ2 (3.28)

0 < 2A
√

c1λ1c2λ2 (3.29)

So, it is verified that joint-shipment is more profitable than the profit obtained

when shippers operate individually when A < A2.

■

3.2.2 Not self-sufficient shippers

Here, we study a joint-shipment case where both shippers are not self-sufficient.

Proposition 3.2.2. When A > A1, A3 > A > A2 and A < A4; TP (T ∗) > TD,

(p∗1, p
∗
2) = (1, 1) and T ∗ = T ∗

s .

When A > A4, joint-shipment is not profitable and the shippers will not be able to do

joint-shipment.
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Proof. • When A < A2, from Proposition 3.1.4, it is found that T ∗ = T F
S and

(p∗1, p
∗
2) = (1, 1) since A > A1, A3 > A > A2.

• To prove profitability, TP (T ∗) > TD is checked.

From Proposition 3.1.4, TP (T ∗) = r1λ1 + r2λ2 −
√

2A(c1λ1 + c2λ2).TD

equals to 0, since for A > A2, shippers are not able to do profitable shipments.

So, we checked the following inequality:

r1λ1 + r2λ2 −
√

2A(c1λ1 + c2λ2) > 0 (3.30)

(r1λ1)
2 + (r2λ2)

2 + 2r1λ1r2λ2 > 2A(c1λ1 + c2λ2) (3.31)

(r1λ1)
2 + (r2λ2)

2 + 2r1λ1r2λ2

λ1λ2c1c2
>

2A(c1λ1 + c2λ2)

λ1λ2c1c2
(3.32)

A1

λ2c2
+

A2

λ1c1
+

r1r2
c1c2

>
A

λ1c1
+

A

λ2c2
(3.33)

r1r2
c1c2

>
A− A2

λ1c1
+

A− A1

λ2c2
(3.34)

It is known that A3 > A > A2 and A3 > A > A1 due to not self-sufficiency

conditions and the condition for A value. Also, r1
c1

> r2
c2

is the assumption of

the setting.

A3 − A2

c1λ1

=
r22
2c2

<
r1r2
2c1c2

(3.35)

Since, A < A3 in this case, A−A2

c1λ1
is also less than r1r2

2c1c2
.

So, we found the profitability condition which is A < A4by following arrange-

ments;
r1r2
2c1c2

+
r1r2
2c1c2

>
A− A2

c1λ1

+
A− A1

λ2c2
(3.36)

r1r2
2c1c2

>
A− A2

c1λ1

(3.37)

A <
r1r2λ2

2c1
+ A1 = A4 (3.38)

So, when A < A4, joint-shipment is profitable.

■

When shippers are not self-sufficient, there can possibly be some settings where joint-

shipments are also not profitable.
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Proposition 3.2.3. When A > A1, A5 > A > A3; TP (T ∗) > TD, (p∗1, p
∗
2) =

(1, r2
T ∗
Lc2

) and T ∗ = T ∗
L.

When A > A5, joint-shipment is unprofitable and the shippers will not be able to do

joint-shipment.

Proof. When A > A1, A5 > A > A3;

• From Proposition 3.1.4, it can be clarified that T ∗ = T ∗
L and (p∗1, p

∗
2) = (1, r2

T ∗
Lc2

).

• To prove profitability, TP (T ∗) > TD is checked.

From Proposition 3.1.4, it is found that TP (T ∗) = r1λ1 −
√

2c1λ1(A− A2).

Also, sum of individual profits equal to 0, since they are not be able to do

profitable shipments. So, we checked following inequality:

r1λ1 −
√

2c1λ1(A− A2) > 0 (3.39)

Since we have A > A3 and A3 −A2 =
r22
2c22

(c1λ1), it can be said that A−A2 =
r22
2c22

(c1λ1) + ϵ, where ϵ > 0.

r1λ1 −

√
2c1λ1(

r22
2c22

(c1λ1) + ϵ) > 0 (3.40)

(r1λ1)
2 >

r22c
2
1λ

2
1

2c22
+

c1λ1c
2
2ϵ

c22
(3.41)

(r1λ1)
2 >

r22c
2
1λ

2
1 + c1λ1c

2
2ϵ

2c22
(3.42)

r21λ
2
1c

2
2 − r22c

2
1λ

2
1

c1λ1c22
> ϵ (3.43)

So, when ϵ is less than r21λ
2
1c

2
2−r22c

2
1λ

2
1

c1λ1c22
, joint shipment is profitable. Since A5 =

A1

2
+A2 = A3+

r21λ1

c1
− r22λ1c1

c22
, it is proven that joint shipment is profitable under

A5 > A > A3 condition.

■
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3.2.3 One self-sufficient shipper and One not self-sufficient shipper

The last case we study in this section is one self-sufficient shipper and one not self-

sufficient shipper. In this case, the self-sufficient shipper is always taken as the first

shipper. The conditions of each result is discussed in following theorems.

Proposition 3.2.4. When A < A1, A > A2, A < A3 and A < A6; TP (T ∗) > TD,

(p∗1, p
∗
2) = (1, 1) and T ∗ = T ∗

S .

Proof. When A > A2, A < A3 and A < A6;

• From Proposition 3.1.4, it can be clarified that T ∗ = T ∗
S and (p∗1, p

∗
2) = (1, 1).

• To prove profitability, TP (T ∗) > TD is checked.

From Proposition 3.1.4, it is found that TP (T ∗) = r1λ1+r2λ2−
√

2A(c1λ1 + c2λ2).

Also, individual profit functions are TD = TP1 = r1λ1−
√
2Ac1λ1 since ship-

per 2 is not able to do shipment.So, we checked following inequality:

r1λ1 + r2λ2 −
√

2A(c1λ1 + c2λ2) > r1λ1 −
√

2Ac1λ1 (3.44)

r2λ2 >
√

2A(c1λ1 + c2λ2)−
√

2Ac1λ1 (3.45)
r2λ2√

(c1λ1 + c2λ2)−
√
c1λ1

>
√
2A (3.46)

r22λ
2
2

2[2c1λ1 + c2λ2 − 2
√

c1λ1(c1λ1 + c2λ2)]
= A6 > A (3.47)

So, we reach out the condition defined in theorem. When A < A1, A > A2,

A < A3 and A < A6, the total profit of joint shipment is bigger than individual

profits and both of them are full time shippers.

■

The following theorem considers joint-shipment of a full time shipper and a partial

time shipper.

Theorem 3.2.1. When A < A1, A > A2 and A > A3 ; TP (T ∗) > TD, (p∗1, p
∗
2) =

(1, r2
T ∗
Lc2

) and T ∗ = T ∗
L.
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Proof. When A < A1, A > A2 and A > A3 ;

• From Proposition 3.1.4, it can be clarified that T ∗ = T ∗
L and (p∗1, p

∗
2) = (1, r2

T ∗
Lc2

).

• To prove profitability, TP (T ∗) > TD is checked.

From Proposition 3.1.4, it is found that TP (T ∗) = r1λ1 −
√

2c1λ1(A− A2).

Also, individual profits are TD = TP1 = r1λ1 −
√
2Ac1λ1 since shipper 2 is

not able to do shipment.So, we checked following inequality:

r1λ1 −
√

2c1λ1(A− A2) > r1λ1 −
√

2Ac1λ1 (3.48)√
2c1λ1(A− A2) <

√
2Ac1λ1 (3.49)

A− A2 < A (3.50)

So, the inequality defined by 3.48 is proved. When A < A1, A > A2 and

A > A3, second shipper is partial time shipper and total profit of joint-shipment

is higher than the sum of individual shipments.

■

So, we anaylze possible cases where shippers can take

3.3 s Shipper Setting

Next, we analyze the case where there are s shippers instead of two to derive a more

general solution approach. Any interval of time that begins with shipment of orders

and ends at the instant before the next shipment is called a cycle for this setting also.

The cycles are regenerative and are stationary.

Let pi be the fraction of time for which shipper i operates and a given cycle time

T for shipper i. Then, their individual cycle times Ti equals to Tpi. In that cycle

time, shippers are actively operating and their goods to be shipped are waiting until

dispatch. Until the dispatch, shippers are keeping their goods in their stocks and

waiting cost is incurred at that duration. There can be no profitable and preferable

ways for all shippers to waiting until joint shipment due to different characteristics.
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Revenues and waiting costs of per unit can be varied for all shippers and it directly

affects shippers’ profitability. When pi = 1,shipper i is called as "full time shipper"

and when 0 < pi < 1, shipper i is called as "partial time shipper". There is a relation

among shippers such that ri
ci

>
rj
cj

where the shipper, that has biggest r
c

is assigned

index of 1.

Given T , one can express total profit per unit time, TP (T ), as follows:

TP (T ) =
s∑

i=1

riλipi − (
A

T
+

s∑
i=1

ciλiTp
2
i

2
) (3.51)

So, the problem can be build as the following non linear programming model:

(Profit-s) Max z =
∑s

i=1 riλipi +−(AT +
∑s

i=1
ciλiTp2i

2
)

s.t. 0 ≤ pi ≤ 1 ∀i ∈ 1, 2, 3..s

T ≥ 0

To determine the maximum total profit, TP , one needs to determine optimal T and

pi variables.The same two stage approach where we used in two player setting is ap-

plied: First determine pi values for a givenT , then using these determine T ∗.

3.3.1 Finding optimal pi’s for a given T

To determine that the TP function for a given T is concave, Hessian matrix, H(pi, pj)

is set where i ∈ 1, 2, 3..s. H(pi, pj) is a s× s matrix whose ijth entry is δ2TP (T )
δpiδpj

. The

Hessian matrix is given below:

H(pi, pj) =


−c1λ1T . . . 0

0 −c2λ2T . . 0

0 0 −ciλiT . 0

0 0 . . 0− ciλiT


When TP (T ) has continuous second-order partial derivatives for all variables and all

non-zero principal minors have the same sign as (−1)k wherek = 1, 2..s; then TP (T )
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is concave. (Winston,2004). Here, the first principal minors are diagonal entries of

the H(pi, pj),−ciλiT . These are both non positive. The second principal minor is the

determinant ofH(pi, pj) and it is cicjλiλjT
2 > 0 .To generalize, if k is odd number,

the kth principal minor is non positive else if k is even number, it is non negative.

Thus, TP is a concave function.

For a given T , the optimal values of pi will be found through the Karush Kuhn-

Tucker(KKT) conditions.Let µk be the multiplier of the constraint pi ≤ 1 and µi+s is

be the multiplier of the constraint 0 ≤ pi where i ∈ 1, 2, 3..s. Since the problem is

a maximization problem, if (p∗i , i ∈ 1, 2, 3..s) is an optimal solution to the problem,

then (p∗i , where i ∈ 1, 2, 3..s) must satisfy the following conditions and there must

exist multipliers (µi and µi+s where i ∈ 1, 2, 3..s) satisfying the conditions will be

discussed below.

Corollary 3.3.1. Among s shippers, any shipper i with ri
ci

> T is a full time shipper

and shippers having r
c
≤ T relation are partial time shippers.

For a given T , optimal pi and µi values are as in Table 3.2:

Table 3.2: Optimal dual and primal variables, given T

T p∗ µ∗
rs
cs

< ... < r1
c1
≤ T p∗i =

ri
ciT

, ∀i ∈ 1, 2, 3..s µi = 0, ∀i ∈ 1, 2, 3..s.

rs
cs

< ... < rk+1

ck+1
≤ T <

rk
ck

< .. < r1
c1

.

p∗i = 1 for 1 ≤ i < k

p∗i =
ri
ciT

for k ≤ i ≤ s

µi > 0,µi+s = 0,

for 1 ≤ i < k

µi = 0,µi+s = 0

for k ≤ i ≤ s

T < rs
cs

< ... < r1
c1

p∗i = 1 ∀i ∈ 1, 2, 3..s µi > 0, µi+s = 0 ∀i ∈
1, 2, 3..s

Proof. Constraints which are emerged from the KKT conditions are given below:

p∗i =
riλi − µi + µi+s

ciλiT
∀i ∈ 1, 2, 3..s (3.52)
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µi − µipi = 0 ∀i ∈ 1, 2, 3..s (3.53)

µi+spi = 0 ∀i ∈ 1, 2, 3..s (3.54)

µi ≥ 0 ∀i ∈ 1, 2, 3..s (3.55)

Optimal values are found as follows:

1. When µi = 0, ∀i; from Equations 3.52, p∗i = ri
ciT
∀i and rs

cs
< ... < r1

c1
≤ T

since 0 ≤ pi ≤ 1.

2. When µi > 0,µi+s = 0,from Equations 3.52 and 3.54, pi = 1 for 1 ≤ i < k

and T < rk
ck

< ... < r1
c1

since T =
ri−

µi
λi

ci
. When µi = 0,µi+s = 0, from

Equations 3.52 and 3.54, p∗i =
ri
ciT

and rs
cs

< ... < rk+1
ck+1
≤ T for k ≤ i ≤ s since

0 ≤ pi ≤ 1.

3. When µi > 0 and µi+s = 0 ∀i ; from Equations 3.53 and 3.52, p∗i = 1 ∀i where

T < rs
cs

< ... < r1
c1

since T =
ri−

µi
λi

ci
.

Following cases have no real or considerable solution. The cases and reasons

about why they are not considered are given below:

4. Note that, from Equations 3.53 and 3.54, there will be no solution in any cases

where µi > 0 and µi+s > 0 since they can not exist for any corresponding p∗i

values.

5. Note that, from Equations 3.53 and 3.54, there will be no solution in any cases

where µi = 0 but µi+s > 0 since p∗i can not be equal to 0 when r2,c2,T and µ4

have positive values.

■

It can be concluded that among s shippers, shippers having ri
ci

> T relation are full

time shippers and shippers having ri
ci
≤ T relation are partial time shippers.
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According to the findings of p∗i , total profit of full and partial time shippers at a given

T can be expressed as follows:

TP (T ) =
k∑

i=1

riλi +
s∑

i=k+1

r2i λi

2ciT
− (

A

T
+

k∑
i=1

ciλiT

2
) where 0 ≤ k ≤ s and

rs
cs

< ... <
rk + 1

ck + 1
≤ T <

rk
ck

< ... <
r1
c1

for k ≤ i ≤ s.

(3.56)

In Equation 3.56, k values such that k ≤ i ≤ s shows the number of full time shippers

among s shippers. When T is fixed; k is already known, thus full time and partial time

shippers are known. When T changes, k is determined by the finding the new full time

shippers according to comparison of T and r
c
.

3.3.2 Finding optimal T under optimal pi

p∗i values are found and plugged intoTP (T ).After that, T is the only variable of the

total profit function. To maximize total profit value, T ∗ is determined.

Proposition 3.3.1. TP (T ) function is continuous and differentiable.

Proof. The function is continuous, since for any T , lim
T→

r−
k
ck

TP (T ) = lim
T→

r+
k
ck

TP (T ).

k∑
i=1

riλi+
s∑

i=k+1

r2i λi

2ciT
− (

A

T
+

k∑
i=1

ciλiT

2
) =

k−1∑
i=1

riλi+
s∑

i=k

r2i λi

2ciT
− (

A

T
+

k−1∑
i=1

ciλiT

2
)

(3.57)

When we put T = rk
ck

for both sides, we obtain the following.

rkλk =
r2kλkck
2ck

+
ckλkrk
2ck

(3.58)

After algebraic cancellations, we obtain the equality of both sides.

To prove the differentiability of TP (T ), we will check whether the left and right

derivatives of TP (T ) with respect to T is equal or not.

∂

∂T
(

k∑
i=1

riλi+
s∑

i=k+1

r2i λi

2ciT
−(A

T
+

k∑
i=1

ciλiT

2
)) =

∂

∂T
(
k−1∑
i=1

riλi+
s∑

i=k

r2i λi

2ciT
−(A

T
+

k−1∑
i=1

ciλiT

2
))

(3.59)
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When we put T = rk
ck

for both sides, we obtain the following.

∂

∂T
(rkλk −

ckλkrk
2ck

) =
∂

∂T
(
r2kλk

2ckT
) (3.60)

−ckλk

2
= −r2kλkc

2
k

2ckr2k
(3.61)

−ckλk

2
= −ckλk

2
(3.62)

The function is differentiable since lim
T→

r−
k
ck

∂TP (T ))
∂T

= lim
T→

r+
k
ck

∂TP (T ))
∂T

. ■

Proposition 3.3.2. TP (T ) is concave over the region T ∈ [0, T ] and non-increasing

and convex when T ∈ (T ,∞) for an T satisfying rl+1

cl+1
≤ T < rl

cl
with A ≤

∑s
i=l+1

r2i λi

2ci
.

Here, l can take values from 0 to s.

Proof. TP (T ) equals to
∑l

i=1 riλi +
∑s

i=l+1
r2i λi

2ciT
− (A

T
+

∑l
i=1

ciλiT
2

) where 0 ≤
l ≤ s and rs

cs
< ... < rl+1

cl+1
≤ T < rl

cl
< ... < r1

c1
for l ≤ i ≤ s. To examine

increasing/decreasing behavior of the TP(T), the first derivative of TP (T ) function is

checked :
∂TP (T )

∂T
= (

s∑
i=l+1

−r2i λi

2ci
+ A)(

1

T 2
)−

l∑
i=1

ciλi

2
(3.63)

The function is non-increasing when A ≤
∑s

i=l+1
r2i λi

2ci
.

To examine the convex/concave behavior of the TP(T), we check the second derivative

of TP(T):
∂2TP

∂T 2
= (

s∑
i=l+1

r2i λi

2ci
− A)(

2

T 3
) (3.64)

So, we can conclude that TP is concave when
∑s

i=l+1
r2i λi

2ci
≤ A, also non-increasing

and convex when A ≤
∑s

i=l+1
r2i λi

2ci
. ■

Corollary 3.3.2. Since TP (T ) is continuous and differentiable, there is a unique

optimal T value, T ∗. Moreover, T ∗ ∈ [0, T ]. The reason is that after T , the function

becomes convex and non-increasing as it is shown in Proposition 3.3.2.

Due to Corollary 3.3.2 , we already know where T ∗ lies and we have developed the

following algorithm to find the region(where a region is T ∈ [ ri
ci
, ri−1

ci−1
]) where T ∗ lies.
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Algorithm 1 Algorithm to find the region of optimal T value and the number of partial

time shippers
k ← s

while k ≥ 0 do

if limT→ rk
ck

∂TP (T )
∂T

≤ 0 and limT→
rk+1
ck+1

∂TP (T )
∂T

≥ 0 then

l = k

break

else

k ← l − 1

end if

end while

Additionally, it will correspond to the number of partial time shippers in the grand

coalition

Hence, TP (T ) equals to
∑l

i=1 riλi +
∑s

i=l+1
r2i λi

2ciT
− (A

T
+
∑l

i=1
ciλiT

2
) where l is the

number founded by the Algorithm 1 and rs
cs

< ... < rl+1
cl+1
≤ T < rl

cl
< ... < r1

c1
. After

finding the region of optimal T value and number of partial time shippers, from first

order condition of TP (T ) and the concavity of the function proven at Proposition

3.3.2, we conclude that T ∗ =

√
2(A−

∑s
i=l+1

r2
i
λi

2ci
)∑l

i=1 ciλi
by FOC of the TP function. From

the equation of T ∗, we can express relations of parameters and T ∗. If A increases,

there will be a T ∗. Also, the increase of total profits per unit time made my partial

shipper and the increase of full time shippers’s total waiting cost at per unit time,∑l
i=1 ciλi , decreases optimal cycle time T ∗.

To summarize, we analyze two shipper and s shipper cases according to our prob-

lem settings in this chapter. We find the necessary conditions and optimal levels of

decision variables such as T and pi for maximizing total profit for both cases.
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CHAPTER 4

THE COOPERATIVE GAME

We found that total profit with joint shipment can be more profitable compared to

individual shipping under several conditions. Also, we clarified the optimal shipment

interval under several conditions for maximizing total profit of the coalition with s

shippers. In this chapter, we work on the problem about finding optimal policy for

shippers for participation decisions they made on joint-shipment coalition and allo-

cation of the total profit made between shippers considering concepts of cooperative

games.

We study this problem with a cooperative game theoretical approach in this chapter.

Firstly, we introduce the game and then investigate the several well known properties

of the cooperative games to find that whether our game has these properties or not.

Let v be a real valued function and N be a group of shippers where v : 2N → R.

Given a sub-coalition s such that s ⊆ N , let v(s) denote the amount of profit per unit

time obtained by s. Note that, v(s), is simply the optimal TP (T ) value presented

in Proposition 3.3.2 for any coalition. Preceding the findings showing v(s) is higher

than total profit value of individual shipments of s shippers, the allocation of v(s)

among the shippers is studied.

4.1 The Allocation Scheme for the Cooperative Game

Allocation schemes are critical to set up cooperative games. They define how total

profit made by the coalition will be allocated. Without allocation schemes, players

will not foresee their profit made by joining coalition and can not make decisions
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about whether cooperating with the coalition or not.

Now consider the fixed cost of shipment that enables shipper i to operate individually

under a cycle length of T ∗, where T ∗ is the optimal cycle length of s shippers shipping

jointly. In other words, given t
′
i is the optimal cycle length of an individually operating

shipper, we are interested in the A value that makes t
′
i = T ∗. Note for shipper i,

t
′
i =

√
2ATi

λici
. Then if A = (T ∗)2λici

2
, this will make t

′
i = T ∗. Let the corresponding

fixed cost of shipment be denoted with ATi. Here ATi =
(T ∗)2λici

2
.

In the coalition, there are s − k partial time shippers and k full time shippers. The

summation of the ATi values of the full time shippers is expressed.

k∑
i=1

ATi =
k∑

i=1

T ∗2λici
2

=
T ∗2∑k

i=1 λici
2

(4.1)

Meanwhile, note that we can express A as a function of T ∗ using the expression for

T ∗ under joint shipment:

T ∗ =

√√√√2(A−
∑s

i=k+1
r2i λi

2ci
)∑k

i=1 ciλi

(4.2)

A =
T ∗2∑k

i=1 λici
2

+
s∑

i=k+1

r2i λi

2ci
(4.3)

Note also that the expression of A value is the summation of ATi values and the profit

of the partial time shippers in the coalition. This can be stated as in the following

equation:

A =
k∑

i=1

ATi +
s∑

i=k+1

r2i λi

2ci
(4.4)

We propose a profit allocation scheme with the insights of the equation above: All

full time shippers take the same profit as their profit of the individual shipment sce-

nario with ATi and partial time shippers do not take any profit from coalition. The

summation of the allocated profit to full time shippers is equal to total profit gained

by the coalition. The equality is reached out by following equations.
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We decompose A into terms in Equation 4.4 and then allocate each term with index

i to the corresponding shipper. Then we let each shipper to operate individually but

optimally under the allocated portion of fixed cost of shipment.

For a full time shipper, optimal profit when operating individually under ATi would

be:

riλi −
√
2ATiλici = riλi − ATi

T ∗ − λiciT
∗

2
= λi(ri − ciT )

For a partial time shipper, allocated fixed cost of shipment is r2i λi

2ci
. Then corresponding

would be riλi −
√

2r2i λiλici
2ci

= 0.

Note that sum of all profits under allocated A would give TP (T ) in Equation 3.56

under T ∗.

TP (T ∗) =
k∑

i=1

riλi+
s∑

i=k+1

r2i λi

2ciT
−(A

T
+

k∑
i=1

ciλiT

2
) =

k∑
i=1

riλi−(
k∑

i=1

ATi

T ∗ +
k∑

i=1

ciλiT
∗

2
)

(4.5)

TP (T ∗) =
k∑

i=1

λi(ri − ciT
∗) (4.6)

Let ATPi(T
∗) denote the allocated profit to full time shipper i.

ATPi = λi(ri − ciT
∗) (4.7)

In the following, we first discuss some properties of the cooperative shipment consol-

idation game, before we show that the proposed allocation scheme is in the core.

4.2 Monotonicity of the Cooperative Game

The principle of monotonicity for cooperative games states that if a game changes so

that some player’s contribution to all coalitions increases or stays the same then the

player’s allocation should not decrease. (Young, 1985) So, the game is monotonic if

the following condition holds:

v(S) ≤ v(T ), for ∀S ⊂ T ⊆ N where S and T denote subcoalitions (4.8)
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To investigate the monotonicity of the game, the following results will be used. Let

T ∗
s denote T ∗ of the coalition s.

Corollary 4.2.1. If a new shipper participates in a subcoalition,S, T ∗
S decreases.

Proof. It can be observed from T ∗ equation:

T ∗ =

√√√√2(A−
∑s

i=k+1
r2i λi

2ci
)∑k

i=1 ciλi

(4.9)

. If the new shipper is full time shipper, denominator of the expression increases and

T ∗ decreases. Otherwise, numerator of the expression decreases and T ∗ decreases.

■

Corollary 4.2.2. If a new shipper participates in a subcoalition, S, ATi and waiting

costs decreases .

Proof. If a new shipper participates in a subcoalition, T ∗ decreases.(Corollary 4.2.1 )

When T ∗ decreases; we can say that ATi decreases by Equation 4.4 and waiting costs

decreases, which equals to
∑l

i=1
ciλiT

2
. ■

Proposition 4.2.1. The game is monotonic.

Proof. If a new shipper participates in a subcoalition, the allocated profit of the full

time shipper increase while partial time shippers’ allocated amount does not change.

Furthermore, a partial time shipper may become a full time shipper. ■

Thus, it is verified that the game is monotonic by Proposition 4.2.1.

4.3 Superadditivity of the Cooperative Game

The profit game is superadditive if sum of profit under two disjoint coalitions is lower

than the profit under union of these coalitions:

v(S ∪ T ) ≥ v(S) + v(T ), for all disjoint S, T ⊆ N (4.10)
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Proposition 4.3.1. In our game, total profit function of a coalition is greater than or

equal to summation of the subcoalition’s profit functions.

Proof. Consider set of full time shippers under coalition S and T , each with allocated

profit λi(ri − ciT
∗
S) or λi(ri − ciT

∗
T ). In the union of S ∪ T , profit of each full time

shipper would increase. Furthermore, some partial time shippers may become full

time shippers and their allocated profit will become positive. Thus, total profit under

S ∪ T is greater than sum of total profit of S and T . ■

Thus, it is verified that the game is superadditive by Proposition 4.3.1.

4.4 The Core of the Cooperative Game

Let x = (x1, x2, . . . , xn) be a vector such that the allocation amount for the nth player

is xn. x is called an imputation if it satisfies the group rationality and individual

rationality conditions, which are given below. If this imputation also satisfies the

group rationality, then it is said that it is in the core.(Winston, 2004) Group rationality

guarantees the best allocation amounts for any of players by controlling all possible

subcoalitions.

v(N) =
i=n∑
i=1

xi (Group rationality) (4.11)

xi ≥ v({i}) (Individual rationality) (4.12)

If the imputation also satisfies the following condition for S ⊂ N , then it is said that

it is in the core.(Winston, 2004)∑
i∈S

xi ≥ v(S), S ⊂ N (4.13)

Proposition 4.4.1. The proposed allocation vector is an imputation.

Proof. For proving the existence of the proof for the proposed vector, conditions are

checked below.

• v(N) is directly equal to the allocation amounts of full time shippers in the

coalition and partial time shippers take no profit from the coalition.(Equation

4.6.) So, group rationality condition is satisfied.
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• The partial time shippers does not take profit from the coalition but it is not

worse than the profit made when they would operate individually, which is zero.

The full time shippers increase their allocated profit amount by participating in

the coalition. Since they take the profit amount which equals to their individual

shipments with with ATi found in Equation 4.4, instead of A. Since ATi < A,

individual rationality condition is also held for the vector.

Since, individual and group rationality holds, the allocation vector is an impu-

tation.

■

Proposition 4.4.2. The proposed allocation rule is in the core.

Proof. In a coalition S, full time shippers get λi(ri − ciT
∗
s ). As coalition gets bigger

in size, each full time shipper get larger profit. Partial time shippers are also get

non-decreasing profits. Thus, the proposed allocation is in the core. ■

4.5 Convexity of the Cooperative Game

A cooperative game is convex if the contribution of additional players presents in-

creasing returns to scale.(Shapley,1971)

Shapley(1971) states that a game (N, v) is convex if for all S, T ∈ 2N with S, T ⊆ N ,

there is increasing marginal return property. The condition can be expressed via the

following inequality:

v(S)− v(S ∩ T ) ≤ v(S ∪ T )− v(T ) (4.14)

Equivalently, it can also be expressed as follows for the sets such as S ⊂ T ⊆ N and

m /∈ S, T :

v(T ∪ {m})− v(T ) ≥ v(S ∪ {m})− v(T ) (4.15)

To show the convexity, we use superadditivity of TP function w.r.to λi and λj .If TP

is superadditive, this means that TP increases more with an additional shipper for

bigger coalitions.
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Lemma 4.5.1. For any coalition of size s, TP is superadditive.

Proof. TP (T ) =
∑k

i=1 riλi +
∑s

i=k+1
r2i λi

2ciT
− (A

T
+
∑k

i=1
ciλiT

2
) where shippers 1 to

k are full time shippers and shippers k + 1 to s are partial time ones. Let set F be

the set of full time shippers and set P be the set of partial time shippers. To prove the

superadditivity, we check whether the cross partial derivatives of TP (T ) with respect

to λi and λj is positive because it shows the rate of change of total profit to shipper

i’s arrival rate by the increase of shipper j’s arrival rate, which can be a change from

zero to a positive number.

There are 3 possibilities for partial time or full time shipper distinction for shipper i

and shipper j:

• A partial time shipper i and a full time shipper j :

∂2TP

∂λi∂λj

=

r2i λi

2ci√
2(A−

∑s
i=l+1

r2i λi

2ci
)

cj
cjλj +

∑
k∈F−(j) ckλk

> 0 (4.16)

• A partial time shipper iand a partial time shipper j, where
∑l

z=1 czλz > 0 as

there is at least one full time shipper:

∂2TP

∂λi∂λj

= −

√√√√ l∑
z=1

czλz

− r2i λi

2ci

r2jλj

2cj

2
3
2 (A− r2i λi

2ci
− r2jλj

2cj
−
∑

k∈P−(i,j)

r2kλk

2ck
)
3
2

> 0 (4.17)

• A full time shipperi and a full time shipper j :

∂2TP

∂λi∂λj

=
cicj

4(ciλi + cjλj +
∑l

k=1 ckλk)
3
2

√√√√2(A−
s∑

i=l+1

r2i λi

2ci
) > 0 (4.18)

So, the cross partial derivatives are positive and TP is superadditive with respect to

λi and λj . ■

It is verified that TP is superadditive and bigger coalitions(higherλ rates) leads more

increase with new participating shippers. Inequality 4.15, the convexity condition,

can also be expressed as follows for an example case where S ⊂ T ⊆ N and T =

(S ∪ {j}) :

Let v(S∪{j}∪{m}) be the total profit of S∪{j}∪{m}. It also equals to v(T∪{m}).
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v(S ∪ {j} ∪ {m})− v(S ∪ {j})
?

≥ v(T ∪ {m})− v(T ∪ {j})∫ λm

0
∂v(S∪{j}∪{m})

∂λm
dλj

∣∣
λj=λj

?

≥
∫ λm

0
∂v(S∪{j}∪{m})

∂λm
dλj

∣∣
λj=0∫ λj

0

∫ λm

0
∂v(S∪{j}∪{m})

∂λm∂λj
dλj

dλm ≥ 0

It is shown that TP is superadditive by verifying that the cross partial derivatives are

non-decreasing. So, we find that the above inequality expression for the example case

holds and convexity of the profit game is confirmed.

4.6 Example

The following parameters are set for exemplifying the discussed properties of the

game. After finding total profits of coalitions, only one example is shared even the

properties hold for every possible cases.

Table 4.1: Table of Parameters

Shipper r c λ A

Shipper 1 105 4 8

1500Shipper 2 50 2.9 4

Shipper 3 5 0.8 8

Under optimality conditions, the total profit values of the coalitions for this problem

setting are given in following table:

Table 4.2: TP values and allocations of possible coalitions for the test setting

Coalition S ∈ N v(S) Allocations

{1} 530.16 [530.16]

{2} 13.45 [13.45]

{3} 0 [0]

{1,2} 678.3 [574.6,103.7]

{1,3} 543.4 [543.4,0]

{2,3} 21.4 [21.4,0]

{1,2,3} 693.7 [585.9,107.8,0]
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• The condition for monotonicity, Inequality 4.8, holds and it is shown for the

following subcoalition:

v({3, 2, 1}) >= v({3, 2})
693.7 >= 21.4

• The condition for superadditivity, Inequality 4.10, holds and it is shown for the

following subcoalition:

v({3, 2, 1}) >= v({3, 2}) + v({1}
693.7 >= 21.4 + 530.16

• The conditions for existence of the core; Inequality 4.11,Inequality 4.12 and

Inequality 4.13, holds and it is shown for the following subcoalition:

v({3, 2, 1}) = x1 + x2 + x3 (Group Rationality)

693.7 = 585.9 + 107.8 + 0

x1 >= v({1}) (Individual Rationality)

585.9 > 530.16

x1 + x2 + x3 >= v({2, 1}) (Core condition)

693.7 > 678.3

• The condition for convexity, Inequality 4.15, holds and it is shown for the fol-

lowing subcoalition:

v({3, 2} ∪ {1})− v({3, 2}) ≥ v({3} ∪ {1})− v({3})
672.3 ≥ 543.3
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CHAPTER 5

NON-COOPERATIVE APPROACH

The shipment consolidation game is also studied as a non-cooperative game where

shippers act selfishly. Even if they do joint-shipment, they will decide according to

their stand alone profit per unit time regardless of the other shippers profit levels.

After we investigate the behavior of shippers under non-cooperative game, we will be

able to compare the total profits made by cooperative and non-cooperative games and

study on the price of anarchy.

In the following sections, we will discuss our game settings, profit function of ship-

pers and their best response functions. After that, we show that there is a multiple

Nash equilibria when there are multiple shippers having the same and smallest cycle

time.

5.1 Setting for non-cooperative game

In this game, each shipper needs to decide on contribution level for transportation

cost, A. All characteristics of shippers are common knowledge. Each shipper moves

simultaneously and determines their contribution level. Then, with the total contri-

bution level, shippers selects the lowest cycle time that can be operated with and

shipments occur.

Let Ci be the contribution amount per unit time for player i, i ∈ N . Then
∑

i∈N Ci is

the total allocated contribution amount in the game. The lowest cycle time is obtained

as TN(C1, C2, ..CN) = A∑
i∈N Ci

, which we will shortly show as TN . Let M be the

number of shippers contributing more than 0.
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5.2 Profit Function

We write shipper i’s profit per unit time as a function of Ci as follows:

TPi(Ci|
∑

j∈M/{i}

Cj) =

riλi − Ci − ciλiA
2(
∑

j∈M/{i} Cj+Ci)
if ri

ci
> TN

(
r2i λi

2ci
)(

∑
j∈M/{i} Cj+Ci

A
)− Ci if ri

ci
≤ TN

(5.1)

The expression follows from the observation that for a given T , if the comparison of
ri
ci
> TN , then shipper i is a full time shipper, otherwise it is a partial time shipper.(see

Corollary 3.3.1 )

We may equivalantly write the condition ri
ci
> TN as a condition on Ci as:

ri
ci
> TN

ri
ci
> A∑

i∈M Ci

ri
ci
> A∑

j∈M/{i} Cj+Ci

Ci >
Aci
ri
−

∑
j∈M/{i}

Cj (5.2)

Let the right hand side of Inequality 5.2 be denoted with TH(
∑

j∈M/{i}Cj):

TH(
∑

j∈M/{i}Cj) =
Aci
ri
−
∑

j∈M/{i}Cj

Rewriting Equation 5.1:

TPi(Ci |
∑

j∈M/{i}

Cj) =

riλi − Ci − ciλiA
2(
∑

j∈M/{i} Cj+Ci)
if Ci ≥ TH(

∑
j∈M/{i}Cj) and

(
r2i λi

2ci
)(

∑
j∈M/{i} Cj+Ci

A
)− Ci if Ci < TH(

∑
j∈M/{i}Cj)

(5.3)

Lemma 5.2.1. TPi(Ci |
∑

j∈M/{i}Cj) function is continuous and differentiable in Ci.

Proof. For continuity, we check whether limCi→TH(
∑

j∈M/{i} Cj)+ TPi(Ci |
∑

j∈M/{i}Cj) =

limCi→TH(
∑

j∈M/{i} Cj)− TP (Ci).
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lim
Ci→TH(

∑
j∈M/{i} Cj)+

TPi(Ci |
∑

j∈M/{i}

Cj) = riλi − (
Aci
ri
−

∑
j∈M/{i}

Cj)−

ciλiA

2(
∑

j∈M/{i}Cj +
Aci−ri

∑
j∈M/{i} Cj

ri
)

(5.4)

lim
Ci→TH(

∑
j∈M/{i} Cj)+

TPi(Ci |
∑

j∈M/{i}

Cj) =
riλi

2
− (

Aci
ri
−

∑
j∈M/{i}

Cj) (5.5)

lim
Ci→TH(

∑
j∈M/{i} Cj)−

TPi(Ci |
∑

j∈M/{i}

Cj) =

(
r2i λi

2ci
)(

∑
j∈M/{i}Cj + (Aci

ri
−
∑

j∈M/{i}Cj)

A
)− (

Aci
ri
−

∑
j∈M/{i}

Cj)

(5.6)

lim
Ci→TH(

∑
j∈M/{i} Cj)−

TPi(Ci |
∑

j∈M/{i}

Cj) =
riλi

2
− (

Aci
ri
−

∑
j∈M/{i}

Cj) (5.7)

For differentiability, we check whether limCi→TH(
∑

j∈M/{i} Cj)+
∂TPi(Ci |

∑
j∈M/{i} Cj)

∂Ci
=

limCi→TH(
∑

j∈M/{i} Cj)−
∂TP (Ci)

∂Ci
.

lim
Ci→TH(

∑
j∈M/{i} Cj)+

∂TPi(Ci |
∑

j∈M/{i}Cj)

∂Ci

=

− 1 +
ciλiA

2(
∑

j∈M/{i}Cj + (Aci
ri
−
∑

j∈M/{i}Cj)+)2

(5.8)

lim
Ci→TH(

∑
j∈M/{i} Cj)+

∂TPi(Ci |
∑

j∈M/{i}Cj)

∂Ci

= −1 + r2i λi

2Aci
(5.9)

lim
Ci→TH(

∑
j∈M/{i} Cj)−

∂TP (Ci)

∂Ci

= −1 + r2i λi

2Aci
(5.10)

So, we prove that TPi(Ci |
∑

j∈M/{i}Cj) function is continuous and differentiable.

■
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5.3 Characterization of Nash Equilibria

In this part, we first find the best response function and then characterize the Nash

equilibria.

Let ri(
∑

j∈M/{i}Cj) be the best response function of the shipper i in terms of contri-

bution amount of shipper i and given total contribution of other shippers.

Since each player wants to maximize his/her profit, the best response function can be

expressed as follows: ri(
∑

j∈M/{i}Cj) = argmax
Ci

TPi(Ci |
∑

j∈M/{i}Cj)

Proposition 5.3.1. Best response function can be characterized as follows:

ri(
∑

j∈M/{i}

Cj) =



√
ciλiA

2
−

∑
j∈M/{i}Cj if

r2i λi

2Aci
≥ 1 and

√
ciλiA

2
≥

∑
j∈M/{i}Cj

0 if
r2i λi

2Aci
≥ 1 and

√
ciλiA

2
<

∑
j∈M/{i}Cj

0 if
r2i λi

2Aci
< 1

(5.11)

Proof. We characterize best responses for possible values of TH(
∑

j∈M/{i}Cj).

1. TH(
∑

j∈M/{i}Cj) ≥ Ci:

We checked the first order condition of TP (Ci), when TH(
∑

j∈M/{i}Cj) ≥
Ci:

∂TP (Ci)
∂Ci

= −1 + r2i λi

2Aci
.

The first derivative of TP (Ci) indicates that the slope of the function is constant

and the function changes linearly with Ci when TH(
∑

j∈M/{i}Cj) ≥ Ci.

When r2i λi

2Aci
≥ 1, the slope of TP (Ci) is positive, thus C∗

i = TH and we

need to search global optimal solution at Ci > TH region. (Note that TP

function is continuous and differentiable. )

When r2i λi

2Aci
< 1, slope of the function is negative, so we need to search

optimal solution at smallest value in that region. C∗
i = 0 is the best response

value in that region.
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2. When TH(
∑

j∈M/{i}Cj) < Ci:

When r2i λi

2Aci
≥ 1, slope of TP (Ci) is positive, so we need to search global

optimal solution at Ci > TH region as it was proved that TP function is

continuous and differentiable.The first order condition of TP (Ci) when Ci >

TH as follows:

∂TP (Ci)
∂Ci

= −1 + ciλiA
2(
∑

j∈M/{i} Cj+Ci)2
.

From the first order condition of TP (Ci) , C∗
i =

√
ciλiA

2
−

∑
j∈M/{i}Cj when√

ciλiA
2
≥

∑
j∈M/{i}Cj , C∗

i =
√

ciλiA
2
−

∑
j∈M/{i}Cj . C∗

i needs to be within

the range Ci. Since C∗
i ≥ 0, C∗

i = 0 when
√

ciλiA
2

<
∑

j∈M/{i}Cj .

When r2i λi

2Aci
< 1, slope of the function is negative, so we need to search

optimal solution at smallest value of the C∗
i region. Since C∗

i needs to be greater

than or equal to 0. C∗
i = 0.

Note that TH value is key for differing to become full time or partial time shipper

case. In determining the best response, the boundaries of Ci is more decisive for the

value of C∗. ■

Observation. Note that there is an upper bound for the contribution level that shipper

i can do. Cimax equals to
√

ciλiA
2

when
∑

j∈M/{i}Cj = 0. This levels equals to
A
t∗i

where t∗i is 2A
ciλ1

. In other words, that is the optimal level shipper i pay in their

individual shipment case showing that there will be no shippers paying more than the

amount to reach out t∗i .

Observation. Note that if r2i λi

2Aci
≥ 1, shipper i is self-sufficient to operate individually

and if r2i λi

2Aci
< 1, shipper i is not self-sufficient to do shipments. These are validated

from individual shipment total profit function, riλi −
√
2Aciλi. (see 3.3 )

Corollary 5.3.1. There are no partial time shippers who are making any contribution

a non-cooperative game. Shippers are whether free-riders or contributors as full time

shippers.

When shippers act selfishly, it is meaningful that they will not contribute for the trans-

portation cost where they can participate partially only. Not self-sufficient shippers
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are not able to do individual shipments, so there is no reason for them to contribute

for joint-shipment. If they are self-sufficient, they check their t∗ value and for smaller

cycle times they will not prefer to contribute.

Next, we characterize the Nash Equilibria. Let n be the number of self-sufficient

shippers that are able to make shipments individually and m be the number of ship-

pers that have the smallest optimal cycle time for individual shipments,t∗i among N

shippers, (possibly m ≥ 2 and m ≤ n ≤ s). In Lemma 3.0.1, it is expressed that

t∗i =
√

2A
ciλi

. Let w.l.o.g. suppose that t∗1 = t∗2 = .. = t∗m < t∗m+1 ≤ ... ≤ t∗n.

Equivalently, c1λ1 = c2λ2...cmλm > cm+1λm+1 ≥ ... ≥ cnλn

Theorem 5.3.1. For n > 0, following contributions form multiple Nash equilibria:

(C∗
1 , C

∗
2 ..C

∗
m) = {x1, x2, ..xm : xi ≥ 0,

∑m
i=1 xi =

√
c1λ1A

2
}, 1 ≤ j ≤ m, m =

1, 2, ..n and

Cj = 0, j ≥ m+ 1.

For n = 0, following strategy profile is the unique Nash equilibria: C∗
i = 0 i ∈ N .

Proof. For all m shippers, best response will be
√

ciλiA
2
−
∑

j∈M/{i}Cj , since r2i λi

2Aci
≥

1 for all i ∈ m. (Equation 5.11). Since their ciλi values are equal; summation of their

contribution levels will be equal to
√

c1λ1A
2

. Thus, Ci for all i ∈ m will become as

follows:

C1 =
√

c1λ1A
2
−
∑

j∈[1,m]/{1}Cj

C2 =
√

c1λ1A
2
−
∑

j∈[1,m]/{2}Cj

Ci =
√

c1λ1A
2
−
∑

j∈[1,m]/{i}Cj

Cm =
√

c1λ1A
2
−
∑

j∈[1,m]/{m}Cj

Summing Ci for all i ∈ m’s gives us:

∑
j∈[1,m] Cj = m

√
c1λ1A

2
− (m− 1)

∑
j∈[1,m]/{m}Cj
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After, m’s cancel out, it is found that:

∑
j∈[1,m]

Cj =

√
c1λ1A

2
(5.12)

So, for all m shippers, contribution levels that are
∑

j∈[1,m]Cj =
√

c1λ1A
2

are multiple

equilibrium points.

Recall the observation about self sufficient shippers having r2i λi

2Aci
≥ 1. Since all n

shippers are self-sufficient, they have r2i λi

2Aci
≥ 1. But there will be no more than one

shipper group, that has same t∗i , willing to contribute
√

ciλiA
2
−
∑

j∈M/{i}Cj amount

according to Equation 5.11.

In the following, we show that when m = 1, shipper 1 is the only shipper with C1 > 0

and all other shippers must have Ci = 0. The proof is done by contradiction:

Suppose there are two self-sufficient shippers with Ci > 0 : C1 > 0, C2 > 0 and

t∗1 < t∗2. C1 equals to
√

c1λ1A
2
− C2 and C2 equals to

√
c2λ2A

2
− C1 according to

Equation 5.11 assuming for now that
√

c1λ1A
2
≥ C2 and

√
c2λ2A

2
≥ C1 .

Plugging C2 into C1 equation gives us:

C1 =
√

c1λ1A
2
− (

√
c2λ2A

2
− C1)

C1 =

√
c1λ1A

2

2
−

√
c2λ2A

2

2

Plugging C2 into C1 equation gives us:

C2 =
√

c2λ2A
2
−

√
c1λ1A

2

2
−

√
c2λ2A

2

2

C2 =

√
c2λ2A

2

2
−

√
c1λ1A

2

2

It is well known that t∗i =
√

2A
ciλi

.since we assume that t∗1 < t∗2;

√
2A
c1λ1

<
√

2A
c1λ1

Reforming this to relate with C2:
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A
t∗1
=

√
c1λ1A

2
> A

t∗2
=

√
c2λ2A

2

C2 =

√
c2λ2A

2

2
−

√
c1λ1A

2

2
< 0

This conflicts with our starting assumption that C2 > 0. Thus, there can not be 2

players contributing positive amount under Nash equilibria with m = 1.

Secondly, there is no equilibrium point where shipper 1 is not the one who is con-

tributing . Only shipper 1 contributes with C1 =
√

c1λ1A
2

. To show the reason behind,

suppose shipper 2 with t1 ≤ t2 has C2 > 0 and all of the shippers have Ci = 0.

Specifically, we have
√

c2λ2A
2
≥

∑
j∈M/{2}Cj , C2 =

√
c2λ2A

2
−

∑
j∈M/{i}Cj and

c2λ2 < c1λ1. Since,
√

c1λ1A
2
≥

√
c2λ2A

2
≥

∑
j∈M/{i}Cj from best response function

C1 =
√

c2λ2A
2
−

∑
j=3,4.. Cj > 0, which contradicts the assumption that C2 > 0,

Ci = 0, i ̸=

When m = 0, none of the shippers are self-sufficient, i.e., r2i λi

2Aci
< 1. Their best re-

sponse is not to contribute and none of them will want to deviate from the equilibrium

since there is no profit to take with other actions.

■

For a 2 shipper coalition, best response graph is analyzed. As it can be seen Figure

5.1 also, both shipper will not deviate when shipper 1 contribute the amount needed to

reach out their stand-alone shipment cycle time and shipper 2 will not contribute. The

parameter sets are (r1, c1, λ1) = (105, 4, 8) ,(r2, c2, λ2) = (50, 2.9, 4) and A = 1300.
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Figure 5.1: A Graph of contribution levels of 2 self-sufficient shipper, t∗1 < t∗2
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CHAPTER 6

NUMERICAL ANALYSIS

In this chapter, we provide numerical analysis on cooperative and non-cooperative

scenarios for shipper groups having different characteristics and aim to quantify the

price of anarchy by comparing the profit of each shipper. The price of anarchy is de-

fined by the ratio of the profit difference under cooperative game and non-cooperative

game over the profit made by the cooperative game. The higher value of price of an-

archy shows more profit loss due to selfish attitudes of the shippers. We expect values

between zero and one. In the proposed allocation scheme of the cooperative game,

the partial shippers take 0 profit. For these cases, we take price of anarchy as zero

since there can be no efficiency loss due to selfish behaviors of shippers.

Additionally, we also calculate Gini coefficient under cooperative and non-cooperative

games to observe the profit allocation differences among shippers. Gini coefficient

is defined as the mean difference from all observed quantities (Gini, 1912). It is a

measure of inequality of a distrubition which takes value between 0 and 1. Zero

represents perfect profit equality and one represents perfect profit inequality. The co-

efficient is found by the ratio of the area between the Lorenz Curve of the distribution

and the uniform distribution line and the area under the uniform distribution line. The

Lorenz Curve is developed to demonstrate income distributions by Lorenz (1905). It

shows the proportion of total income is in the hands of a given percentage of popula-

tion. An example of The Lorenz Curve for a non-cooperative game with 5 shippers is

calculated. It can be seen in Figure 6.1.

In our analysis, since we have results for discrete levels instead of continuous ones, we

approximate the Gini coefficient of each scenario by dividing summation of the dif-

ferences of cumulative perfect equal profit allocation from cumulative profit allocated
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Figure 6.1: The Lorenz Curve and Perfect Equality Line for a non-cooperative profit

game

under Lorenz curve to summation of the cumulative profit under perfect distribution

rule. We normalize the allocated profits and make an ascending order of shipper’s

allocated profit. Normalization is made according to ratio of cumulative allocated

profit at for the number of shipper at that point to total profit made by all shippers.

In Figure 6.1, Lorenz curve of a non-cooperative game and the perfect equality line

is exemplified. Here, the Gini coefficient is found by differences of sum of white

boxes from sum of grey boxes divided by sum of white boxes. Lorenz curve and Gini

coefficient is calculated for both cooperative and non-cooperative games to compare

the allocation fairness.

For the calculations of total profit under cooperative games, TP (T ∗) function (Equa-

tion 4.6) is computed where T ∗ =

√
2(A−

∑s
i=l+1

r2
i
λi

2ci
)∑l

i=1 ciλi
where l is the full time shipper

in the coalition and s is the number of shippers in coalition. For each shipper’s profit

comparison, we consider our allocation scheme: Full time shippers take λi(ri − Tci)

where i ∈ [0, l] and partial time shippers do not take any profit. This profit amount

equals to the same profit they make under individual shipment scenario with ATi

transportation cost.

For the calculations of total profit under non-cooperative games, by Theorem 5.3.1,
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we find the shipper group, m ≥ 1, having minimum optimal cycle time at individual

shipment case, t∗1, and determine the total contribution level:
∑

j∈m Cj =
√

c1λ1A
2

.

Then, TPi(Ci|
∑

j∈M/{i}Cj) function at Equation 5.1 is computed for each shipper i,

considering their TH values.

For both games, we also check average individual profits of shippers and price of

anarchy. This is calculated by total profits under a coalition divided by number of

shippers in the coalition, N. This shows the changes of the allocation in both games.

For testing a wide variety of cases, we study on different levels of N , A,r, c, λ. We

create a base case for parameters (Table 6.1):

Table 6.1: Parameter values corresponding to base case

Parameter Value/Range

N 5

A 100

r U[5,30]

λ U[2,10]

c U[2,7]

For each parameter, there are different levels to be tested. While testing a parameter,

the other independent parameters remain at the base case.

Table 6.2: Levels of parameter values

Parameter Value/Range

N 3, 5, 10, 20

A 10, 50, 100, 150, 200, 300

r U[5,40], U[20,50], U[30,70]

λ U[2,10], U[15,25]

c U[0,1], U[1,5], U[5,10], U[10,15]

In the following sections, the scenarios are created for measuring the effects of the

parameters on our performance measures, which are average individual profit levels,

total profit levels, Price of Anarchy (PoA) and Gini coefficients for cooperative and

non-cooperative game. Each parameter will be discussed separately. For each test
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scenario, we make 5 replications and take average of them to eliminate the outlier

cases coming from randomness.

6.1 Effect of Number of Shippers

For observing the effect of number of shippers in the coalitions, we check a variety

of N values, which can be seen in 6.2. Starting with average individual profits, it is

lightly increasing or almost remaining same with respect to increase in N as seen in

Figure 6.2. Price of anarchy is slightly decreasing as there can be more free shippers

making profits in non-cooperative game whereas there can be more partial shippers

who takes no profit in cooperative game. Total profits made under both cooperative

Figure 6.2: Change in average individual profit under cooperative and non-

cooperative games and change in average individual PoA with respect to a change

in N

and non-cooperative game increases with N since more shippers make more profits.

The price of anarchy slightly decreases with the same reason in average individual

profit case. (Figure 6.3) The Gini coefficient under cooperative and non-cooperative
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Figure 6.3: Change in total profit and price of anarchy under cooperative and non-

cooperative games with respect to a change in N

game shows variance at different N levels.(Figure 6.4) When number of shippers

increases, allocation in non-cooperative game seems more fair according to Gini co-

efficient since the coefficient is lower under non-cooperative games at higher number

of shippers.

Figure 6.4: Gini coefficient under cooperative and non-cooperative games with re-

spect to a change in N
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6.2 Effect of Transportation Cost

For observing the effect of transportation cost in the coalitions, we check a variety

of A values, which can be seen in 6.2. Average individual profits are decreasing

with respect to increase in A since the coalition needs to pay higher cost for making

shipments.(Figure 6.5). Price of anarchy is consistently increasing with A, which

implies that in higher transportation cost, inefficiency of selfishness increasing and

shippers should collaborate for more profits. The reason is that in non-cooperative

case, the transportation cost is paid by not the whole coalition but a small group or

just a shipper having smallest individual cycle time t∗i pays all of the transportation

cost and the contribution is just enough to make same profit with invidiual shipment

case for the contributor shipper. Since the contributor shipper’s individual profitability

is decreasing with respect to increase in A and the other shippers are free shippers,

they can not reach higher profit levels.

Figure 6.5: Change in average individual profit and price of anarchy under coopera-

tive and non-cooperative games with respect to a change in transportation cost, A

Total profits of cooperative and non-cooperative games are decreasing and price of

anarchy is increasing with A that can be seen in Figure 6.6.

Gini coefficient under non-cooperative game is lower than under cooperative game

for all transportation cost levels. That is because non-cooperative game has less total

profits and free shippers.
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Figure 6.6: Change in total profit and price of anarchy under cooperative and non-

cooperative games with respect to a change in transportation cost, A

Figure 6.7: Change in Gini coefficient under cooperative and non-cooperative games

with respect to a change in transportation cost, A
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6.3 Effect of Revenue

For observing the effect of transportation cost in the coalitions, we check a variety of r

values, which can be seen in 6.2. Firstly, average individual profits are increasing with

respect to increase in r since the coalition takes higher revenue for unit of shipment(

Figure 6.8). Price of anarchy is consistently decreasing with r, which implies that in

higher per unit revenue, inefficiency of selfishness is decreasing. As it is discussed,

in non-cooperative case, the transportation cost is paid by not the whole coalition

but a small group or just a shipper having smallest individual cycle time t∗i at that

transportation cost pays all of the cost. The group contributor is willing to contribute

more to take profits at least at the same level of individual shipment case which leads

to more profits for the partial shipper group under the non-cooperative game.

Figure 6.8: Change in average individual profit and price of anarchy under coopera-

tive and non-cooperative games with respect to a change in r

Change in total profit under cooperative and non-cooperative games is similar to

change in average individual pattern. Profits are increasing but total profits under

cooperative game are higher than total profits under non-cooperative game. Price of

anarchy is also decreasing by increase of revenue because the free shippers starting to

make more profits in non-cooperative game while full time shippers in the cooperative

game takes profits by paying ATi values.
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Figure 6.9: Change in total profit and price of anarchy under cooperative and non-

cooperative games with respect to a change in r

Gini coefficient does not get affected by r.

Figure 6.10: Gini coefficient under cooperative and non-cooperative games with re-

spect to a change in r
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6.4 Effect of Waiting Cost

For observing the effect of waiting cost in the coalitions, we check a variety of c

values, which can be seen in Table 6.2. Average individual profits reaches their maxi-

mum levels when the cost is at minimum uniform distribution range which is U[0,1].

Then, the average individual profits made under the games tends to decrease with in-

crease of waiting cost, c. The reason is that increase in waiting cost is independently

decreasing the profit made under both games which can be seen from Equation 5.1

and 4.7.

Figure 6.11: Change in average individual profit and price of anarchy under coopera-

tive and non-cooperative games with respect to a change in c

Total profit under cooperative and non-cooperative games consistently decreases with

the increase of waiting cost parameter (Figure 6.12). Also, the price of anarchy in-

creases since, as it is discussed, in the non-cooperative case, the transportation cost is

paid by not the whole coalition but a small group or just a shipper having the small-

est individual cycle time t∗i pays all of the transportation cost which causes to profit

loss. Since the group contributor becoming less eligible to pay more and there is no

more contributor, shippers can not make more frequent shipment and take less profits

comparing to the cooperative game.

The Gini coefficient results indicates that under increase of waiting cost, total profits

made under both games consistently decreasing and after a certain level the alloca-

tion becomes more unfair in cooperative game because the partial shipper number

increases.
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Figure 6.12: Change in total profit and price of anarchy under cooperative and non-

cooperative games with respect to a change in c

Figure 6.13: Change in Gini coefficient under cooperative and non-cooperative games

with respect to a change in c
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6.5 Effect of Arrival Rate

For observing the effect of arrival rate in the coalitions, we check a variety of λ

values, which can be seen in 6.2. From Figure 6.14, with the increase of arrival rates,

average of individual profits under both games increases. In both arrival rate levels,

the average individual profit under non-cooperative game is less than the profit under

cooperative game.

Figure 6.14: Change in average individual profit and price of anarchy under coopera-

tive and non-cooperative games with respect to a change in λ

From Figure 6.15, with the increase of arrival rates, total profits under both games

increases. In both tested arrival rate levels, the total profit under non-cooperative

game is less than the profit under cooperative game. It is observed that change in the

price of anarchy of the average individual profits is similar to change in the price of

anarchy of total profits.

It can be observed from Figure 6.16 that with the increase of arrival rate slightly de-

creases the Gini coefficient which means the difference of allocated profits of shippers

slightly decreases. Also, there is not a significant difference of the Gini coefficient

under cooperative and non-cooperative games but they are not equal to each other.
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Figure 6.15: Change in total profit and price of anarchy under cooperative and non-

cooperative games with respect to a change in λ

Figure 6.16: Change in Gini coefficient under cooperative and non-cooperative games

with respect to a change in λ
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6.6 Summary of Results

To sum up our findings in all sections, when number of shippers are increasing total

profits made under both games increases and individual profits are slightly increasing.

Profits under cooperative game are higher so there is price of anarchy emerged from

selfish behavior of shippers. The gini coefficient fluctuates with increase of N. As

N increases, noncooperative game seems to preferable because the existence of free

shippers make profits which is more close to equal allocation of profits.

The effect of transportation cost change can be seen as straightforward. The increase

of A decreases total and average individual profits. The price of anarchy consistently

increasing, so selfish behavior creates more inefficiency and profit loss. The effect of

free shippers can also be seen here. The Gini coefficient under non-cooperative games

is lower than cooperative games. Shippers allocation seems more close to each other.

The effect of revenue change is also quite logical. Profits increase when per unit

revenue of each shipper increases. Price of anarchy decreases with respect to an

increase in revenue. This shows that shipper groups having more revenue do not face

with high level inefficiency and they are more likely to attend selfishly.

The effect of waiting cost change affects average individual and total profits nega-

tively. Price of anarchy increases with the increase of waiting cost. So, there becomes

more efficiency loss. Due to the allocation rule of cooperative game, which is partial

shippers takes no profits, the differences in allocated profit are higher in cooperative

game and the gini coefficient of non-cooperative game is lower than the cooperative

one.

The effect of arrival rate change affects average individual and total profits positively.

Price of anarchy decreases with respect to a increase of arrival rate. This shows that

shipper groups having more revenue do not face with high level inefficiency and they

are more likely to attend selfish behavior similar to revenue increase. The increase

of arrival rate slightly decreases the gini coefficient which means the difference of

allocated profits of shippers slightly decreases. The increase of arrival rate slightly

decreases the Gini coefficient which means the difference of allocated profits of ship-

pers slightly decreases. There is not a significant difference of the Gini coefficient
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between non-cooperative and cooperative games.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this study, we have shown that shippers can participate in joint-shipment with

different active operating times. Firstly, we have started with the two shipper setting.

For that, we have found the optimal operating time for each shipper, the optimal joint-

shipment cycle time, and the maximum level of total profit that can be made. We

have verified the conditions needed for doing profitable shipments. joint-shipments

for each combination pair of self-sufficient and not self-sufficient shippers. Then,

we generalized our findings on s shippers setting. We have described the total profit

function and developed an algorithm for finding the region of T ∗ and determining

full time and partial time shippers among s shippers. After all structural findings, we

have described cooperative and non-cooperative games to study on allocation of total

profit made by joint-shipments.

In the cooperative game, we have proposed our allocation scheme: Full time shippers

take the same profit as their profit from the individual shipment case with transporta-

tion cost, Ai and partial time shippers do not take any profit from the coalition. It has

proven that that allocation scheme satisfy the conditions of monotonicity, superaddi-

tivity, convexity and the core of the game exists. In the non-cooperative game, we

have expressed the best response function and characterized the Nash Equilibria. It

has found that the self-sufficient shippers who have same and smallest optimal cycle

time of individual shipment will contribute an amount that makes the joint-shipment

cycle time equals to their optimal cycle time of individual shipments. The remaining

shippers will become free-rider and they will not contribute.

Shippers having different characteristics should prefer doing joint-shipment to de-

crease total transportation costs in a deterministic uncapacitated environment. if they
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act selfishly, instead of being in collaboration for the allocation of total profits, an

efficiency loss occurs, which we have pointed out as the price of anarchy. It is cal-

culated by the profit difference under cooperative game and non-cooperative game

over the profit made by cooperative game. We made numerical analysis to quantify

price of anarchy on average individual profits and total profits. We also check Gini

coefficients of profit allocation schemes of cooperative and non-cooperative games.

We find that change in number of shippers, revenue and arrival rate affect the aver-

age individual and total profits positively. On the contrary, change in waiting cost

and transportation cost loses decreases total and individual profits. The price of anar-

chy increases with cost increasing activities and decreases when the shippers become

more eligible to make shipments individually. The Gini coefficient is not strongly

correlated with price of anarchy but the free shippers in non-cooperative games and

the partial shippers who do not take profits in cooperative games affects the Gini

coefficient significantly.

There can be several potential extensions to our studying setting. There can be differ-

ent preferable transportation modes having limited capacity and corresponding differ-

ent A values. Choosing the optimal transportation mode considering capacity level

and transportation cost will be another decision variable for shippers beside of T and

p values for total profit function. Also, stochastic arrival rates of shipment demands

can be studied. Another exciting extension could be multiple origin-destination pairs

and considering travel times to consolidate shipments. When this addition is done,

the transportation cost, A, may vary with corresponding distances, and the allocation

of the profit may change accordingly.
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